
Symbolic Math Toolbox™

User’s Guide

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Symbolic Math Toolbox™ User’s Guide

© COPYRIGHT 1993–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
August 1993 First printing
October 1994 Second printing
May 1997 Third printing Revised for Version 2
May 2000 Fourth printing Minor changes
June 2001 Fifth printing Minor changes
July 2002 Online only Revised for Version 2.1.3 (Release 13)
October 2002 Online only Revised for Version 3.0.1
December 2002 Sixth printing
June 2004 Seventh printing Revised for Version 3.1 (Release 14)
October 2004 Online only Revised for Version 3.1.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.1.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.1.3 (Release 14SP3)
March 2006 Online only Revised for Version 3.1.4 (Release 2006a)
September 2006 Online only Revised for Version 3.1.5 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.2.2 (Release 2007b)
March 2008 Online only Revised for Version 3.2.3 (Release 2008a)
October 2008 Online only Revised for Version 5.0 (Release 2008a+)
October 2008 Online only Revised for Version 5.1 (Release 2008b)
November 2008 Online only Revised for Version 4.9 (Release 2007b+)
March 2009 Online only Revised for Version 5.2 (Release 2009a)
September 2009 Online only Revised for Version 5.3 (Release 2009b)
March 2010 Online only Revised for Version 5.4 (Release 2010a)
September 2010 Online only Revised for Version 5.5 (Release 2010b)
April 2011 Online only Revised for Version 5.6 (Release 2011a)
September 2011 Online only Revised for Version 5.7 (Release 2011b)
March 2012 Online only Revised for Version 5.8 (Release 2012a)
September 2012 Online only Revised for Version 5.9 (Release 2012b)
March 2013 Online only Revised for Version 5.10 (Release 2013a)

Acknowledgments

Acknowledgments
The MuPAD® documentation is © COPYRIGHT 1997–2012 by SciFace
Software GmbH & Co. KG.

MuPAD is a registered trademark of SciFace Software GmbH & Co. KG.
MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks
of their respective holders.

http://www.mathworks.com/trademarks

Acknowledgments

Contents

Getting Started

1
Product Description . 1-2
Key Features . 1-2

Access Symbolic Math Toolbox Functionality 1-3
Work from MATLAB . 1-3
Work from MuPAD . 1-3

Symbolic Objects . 1-4
Overview of Symbolic Objects . 1-4
Symbolic Variables . 1-4
Symbolic Numbers . 1-5

Create Symbolic Variables and Expressions 1-8
Create Symbolic Variables . 1-8
Create Symbolic Expressions . 1-9
Create Symbolic Functions . 1-10
Create Symbolic Objects with Identical Names 1-11
Create a Matrix of Symbolic Variables 1-12
Create a Matrix of Symbolic Numbers 1-14
Find Symbolic Variables in Expressions, Functions,
Matrices . 1-14

Perform Symbolic Computations . 1-17
Simplify Symbolic Expressions . 1-17
Substitutions in Symbolic Expressions 1-19
Estimate Precision of Numeric to Symbolic Conversions . . 1-22
Differentiate Symbolic Expressions 1-24
Integrate Symbolic Expressions . 1-26
Solve Equations . 1-28
Create Plots of Symbolic Functions 1-29

Assumptions on Symbolic Objects 1-35
Default Assumption . 1-35

vii

Set Assumptions . 1-35
Check Existing Assumptions . 1-36
Delete Symbolic Objects and Their Assumptions 1-36

Using Symbolic Math Toolbox Software

2
Differentiation . 2-3
Derivatives of Expressions with Several Variables 2-4
More Examples . 2-5

Limits . 2-10
One-Sided Limits . 2-10

Integration . 2-13
Integration with Real Parameters . 2-17
Integration with Complex Parameters 2-19

Symbolic Summation . 2-21

Taylor Series . 2-22

Find Asymptotes, Critical and Inflection Points 2-25
Define a Function . 2-25
Find Asymptotes . 2-26
Find Maximum and Minimum . 2-28
Find Inflection Point . 2-30

Simplifications . 2-33
collect . 2-34
expand . 2-34
horner . 2-36
factor . 2-36
simplifyFraction . 2-38
simplify . 2-39

Substitute with subexpr . 2-41

viii Contents

Substitute with subs . 2-43

Combine subs and double for Numeric Evaluations . . . 2-47

Variable-Precision Arithmetic . 2-50
Overview . 2-50
Different Kinds of Arithmetic . 2-51
Accuracy of Numeric Computations 2-54

Basic Algebraic Operations . 2-56

Linear Algebraic Operations . 2-58

Eigenvalues . 2-64

Jordan Canonical Form . 2-69

Singular Value Decomposition . 2-71

Eigenvalue Trajectories . 2-73

Solve an Algebraic Equation . 2-83

Solve a System of Algebraic Equations 2-85

Solve a Single Differential Equation 2-88
First-Order Linear ODE . 2-88
Nonlinear ODE . 2-89
Second-Order ODE with Initial Conditions 2-89
Third-Order ODE . 2-90
More ODE Examples . 2-90

Solve a System of Differential Equations 2-92

Compute Fourier and Inverse Fourier Transforms . . . 2-94

Compute Laplace and Inverse Laplace Transforms . . . 2-101

ix

Compute Z-Transforms and Inverse Z-Transforms 2-108
References . 2-110

Create Plots . 2-112
Plot with Symbolic Plotting Functions 2-112
Plot with MATLAB Plotting Functions 2-115
Plot Multiple Symbolic Functions in One Graph 2-117
Plot Multiple Symbolic Functions in One Figure 2-119
Combine Symbolic Function Plots and Numeric Data
Plots . 2-120

Explore Function Plots . 2-125

Edit Graphs . 2-127

Save Graphs . 2-128

Generate C or Fortran Code . 2-129

Generate MATLAB Functions . 2-131
Generating a Function Handle . 2-131
Control the Order of Variables . 2-132
Generate a File . 2-132
Name Output Variables . 2-133
Convert MuPAD Expressions . 2-134

Generate MATLAB Function Blocks 2-136
Generate and Edit a Block . 2-136
Control the Order of Input Ports . 2-137
Name the Output Ports . 2-137
Convert MuPAD Expressions . 2-137

Generate Simscape Equations . 2-139
Convert Algebraic and Differential Equations 2-139
Convert MuPAD Equations . 2-141
Limitations . 2-141

Special Functions of Applied Mathematics 2-142
Evaluate Special Functions Numerically Using mfun 2-142
Syntax and Definitions of mfun Special Functions 2-143

x Contents

Diffraction Example . 2-148

MuPAD in Symbolic Math Toolbox

3
MuPAD Engines and MATLAB Workspace 3-2

Create, Open, and Save MuPAD Notebooks 3-3

Calculate in a MuPAD Notebook . 3-6
Visual Elements of a Notebook . 3-6
Work in a Notebook . 3-7
Cascade Calculations . 3-7
Synchronize Notebook and its Engine 3-10

Edit and Debug MuPAD Code . 3-12
Edit the Code in the MATLAB Editor 3-12
Debug the Code in the MuPAD Debugger 3-13

Notebook Files and Program Files 3-16

Source Code of the MuPAD Library Functions 3-18

Differences Between MATLAB and MuPAD Syntax . . . 3-19

Copy Variables and Expressions Between MATLAB and
MuPAD . 3-22
Copy and Paste Using the System Clipboard 3-24

Reserved Variable and Function Names 3-26
Conflicts Caused by MuPAD Function Names 3-26
Conflicts Caused by Syntax Conversions 3-27

Open MuPAD Interfaces from MATLAB 3-30

xi

Call Built-In MuPAD Functions from MATLAB
Command Window . 3-32
evalin . 3-32
feval . 3-32
evalin vs. feval . 3-33
Floating-Point Arguments of evalin and feval 3-34

Computations in MATLAB Command Window vs.
MuPAD Notebook Interface . 3-35
Results Displayed in Typeset Math 3-36
Graphics and Animations . 3-36
More Functionality in Specialized Mathematical Areas . . . 3-37
More Options for Common Symbolic Functions 3-38
Possibility to Expand Existing Functionality 3-38

Use Your Own MuPAD Procedures 3-39
Write MuPAD Procedures . 3-39
Steps to Take Before Calling a Procedure 3-40
Call Your Own MuPAD Procedures 3-41

Clear Assumptions and Reset the Symbolic Engine . . . 3-43
Check Assumptions Set On Variables 3-44
Effects of Assumptions on Computations 3-45

Create MATLAB Functions from MuPAD
Expressions . 3-48
Copy MuPAD Variables to the MATLAB Workspace 3-49
Generate MATLAB Code in a MuPAD Notebook 3-50

Create MATLAB Function Blocks from MuPAD
Expressions . 3-52

Create Simscape Equations from MuPAD
Expressions . 3-54
GenerateSimscape Equations in the MuPAD Notebook
Interface . 3-54

Generate Simscape Equations in the MATLAB Command
Window . 3-55

xii Contents

Functions — Alphabetical List

4

Index

xiii

xiv Contents

1

Getting Started

• “Product Description” on page 1-2

• “Access Symbolic Math Toolbox Functionality” on page 1-3

• “Symbolic Objects” on page 1-4

• “Create Symbolic Variables and Expressions” on page 1-8

• “Perform Symbolic Computations” on page 1-17

• “Assumptions on Symbolic Objects” on page 1-35

1 Getting Started

Product Description
Perform symbolic math computations

Symbolic Math Toolbox™ provides functions for solving and manipulating
symbolic math expressions and performing variable-precision arithmetic.
You can analytically perform differentiation, integration, simplification,
transforms, and equation solving. You can also generate code for MATLAB®,
Simulink®, and Simscape™ from symbolic math expressions.

Symbolic Math Toolbox includes the MuPAD language, which is optimized for
handling and operating on symbolic math expressions. It provides libraries of
MuPAD functions in common mathematical areas such as calculus and linear
algebra and in specialized areas such as number theory and combinatorics.
You can also write custom symbolic functions and libraries in the MuPAD
language. The MuPAD Notebook app lets you document symbolic math
derivations with embedded text, graphics, and typeset math. You can share
the annotated derivations as HTML or as a PDF.

Key Features

• Functions for symbolic equation solving, differentiation, integration, and
simplification, as well as for computing transforms and special functions

• Variable-precision arithmetic

• MuPAD symbolic math language

• MuPAD Notebook app with embedded text, graphics, and typeset math
for documenting and managing computations performed in the MuPAD
language

• MuPAD function libraries for common mathematical areas such as calculus
and linear algebra and for specialized areas such as number theory and
combinatorics

• Functions for generating code for MATLAB, Simulink, Simscape, C,
Fortran, MathML, and TeX from symbolic expressions

1-2

Access Symbolic Math Toolbox™ Functionality

Access Symbolic Math Toolbox Functionality

In this section...

“Work from MATLAB” on page 1-3

“Work from MuPAD” on page 1-3

Work from MATLAB
You can access the Symbolic Math Toolbox functionality directly from the
MATLAB Command Window. This environment lets you call functions using
familiar MATLAB syntax.

Work from MuPAD
You can access the Symbolic Math Toolbox functionality from the MuPAD
Notebook Interface using the MuPAD language. The MuPAD Notebook
Interface includes a symbol palette for accessing common MuPAD functions.
All results are displayed in typeset math. You also can convert the results
into MathML and TeX. You can embed graphics, animations, and descriptive
text within your notebook.

A debugger and other programming utilities provide tools for authoring
custom symbolic functions and libraries in the MuPAD language. The MuPAD
language supports multiple programming styles including imperative,
functional, and object-oriented programming. The language treats variables
as symbolic by default and is optimized for handling and operating on symbolic
math expressions. You can call functions written in the MuPAD language
from the MATLAB Command Window. For more information, see “Call
Built-In MuPAD Functions from MATLAB Command Window” on page 3-32

If you are a new user of the MuPAD Notebook Interface, see Getting Started
with MuPAD.

1-3

1 Getting Started

Symbolic Objects

In this section...

“Overview of Symbolic Objects” on page 1-4

“Symbolic Variables” on page 1-4

“Symbolic Numbers” on page 1-5

Overview of Symbolic Objects
Symbolic objects are a special MATLAB data type introduced by the Symbolic
Math Toolbox software. They enable you to perform mathematical operations
in the MATLAB workspace analytically, without calculating numeric
values. You can use symbolic objects to perform a wide variety of analytical
computations:

• Differentiation, including partial differentiation

• Definite and indefinite integration

• Taking limits, including one-sided limits

• Summation, including Taylor series

• Matrix operations

• Solving algebraic and differential equations

• Variable-precision arithmetic

• Integral transforms

Symbolic objects are symbolic variables, symbolic numbers, symbolic
expressions, symbolic matrices, and symbolic functions.

Symbolic Variables
To declare variables x and y as symbolic objects use the syms command:

syms x y

You can manipulate the symbolic objects according to the usual rules of
mathematics. For example:

1-4

Symbolic Objects

x + x + y

ans =
2*x + y

You also can create formal symbolic mathematical expressions and symbolic
matrices. See “Create Symbolic Variables and Expressions” on page 1-8 for
more information.

Symbolic Numbers
Symbolic Math Toolbox software also enables you to convert numbers to
symbolic objects. To create a symbolic number, use the sym command:

a = sym('2')

If you create a symbolic number with 15 or fewer decimal digits, you can
skip the quotes:

a = sym(2)

The following example illustrates the difference between a standard
double-precision MATLAB data and the corresponding symbolic number.
The MATLAB command

sqrt(2)

returns a double-precision floating-point number:

ans =
1.4142

On the other hand, if you calculate a square root of a symbolic number 2:

a = sqrt(sym(2))

you get the precise symbolic result:

a =
2^(1/2)

1-5

1 Getting Started

Symbolic results are not indented. Standard MATLAB double-precision
results are indented. The difference in output form shows what type of data is
presented as a result.

To evaluate a symbolic number numerically, use the double command:

double(a)

ans =
1.4142

You also can create a rational fraction involving symbolic numbers:

sym(2)/sym(5)

ans =
2/5

or more efficiently:

sym(2/5)

ans =
2/5

MATLAB performs arithmetic on symbolic fractions differently than it does
on standard numeric fractions. By default, MATLAB stores all numeric
values as double-precision floating-point data. For example:

2/5 + 1/3

ans =
0.7333

If you add the same fractions as symbolic objects, MATLAB finds their
common denominator and combines them in the usual procedure for adding
rational numbers:

sym(2/5) + sym(1/3)

ans =
11/15

1-6

Symbolic Objects

To learn more about symbolic representation of rational and decimal fractions,
see “Estimate Precision of Numeric to Symbolic Conversions” on page 1-22.

1-7

1 Getting Started

Create Symbolic Variables and Expressions

In this section...

“Create Symbolic Variables” on page 1-8

“Create Symbolic Expressions” on page 1-9

“Create Symbolic Functions” on page 1-10

“Create Symbolic Objects with Identical Names” on page 1-11

“Create a Matrix of Symbolic Variables” on page 1-12

“Create a Matrix of Symbolic Numbers” on page 1-14

“Find Symbolic Variables in Expressions, Functions, Matrices” on page 1-14

Create Symbolic Variables
The sym command creates symbolic variables and expressions. For example,
the commands

x = sym('x');
a = sym('alpha');

create a symbolic variable x with the value x assigned to it in the MATLAB
workspace and a symbolic variable a with the value alpha assigned to it. An
alternate way to create a symbolic object is to use the syms command:

syms x
a = sym('alpha');

You can use sym or syms to create symbolic variables. The syms command:

• Does not use parentheses and quotation marks: syms x

• Can create multiple objects with one call

• Serves best for creating individual single and multiple symbolic variables

The sym command:

1-8

Create Symbolic Variables and Expressions

• Requires parentheses and quotation marks: x = sym('x'). When creating
a symbolic number with 15 or fewer decimal digits, you can skip the
quotation marks: f = sym(5).

• Creates one symbolic object with each call.

• Serves best for creating symbolic numbers and symbolic expressions.

• Serves best for creating symbolic objects in functions and scripts.

Note In Symbolic Math Toolbox, pi is a reserved word.

Create Symbolic Expressions
Suppose you want to use a symbolic variable to represent the golden ratio

1 5
2

The command

phi = sym('(1 + sqrt(5))/2');

achieves this goal. Now you can perform various mathematical operations
on phi. For example,

f = phi^2 - phi - 1

returns

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

Now suppose you want to study the quadratic function f = ax2 + bx + c. One
approach is to enter the command

f = sym('a*x^2 + b*x + c');

which assigns the symbolic expression ax2 + bx + c to the variable f. However,
in this case, Symbolic Math Toolbox software does not create variables
corresponding to the terms of the expression: a, b, c, and x. To perform

1-9

1 Getting Started

symbolic math operations on f, you need to create the variables explicitly. A
better alternative is to enter the commands

a = sym('a');
b = sym('b');
c = sym('c');
x = sym('x');

or simply

syms a b c x

Then, enter

f = a*x^2 + b*x + c;

Tip To create a symbolic expression that is a constant, you must use the sym
command. Do not use the syms function to create a symbolic expression that
is a constant. For example, to create the expression whose value is 5, enter f
= sym(5). The command f = 5 does not define f as a symbolic expression.

Create Symbolic Functions
You also can use sym and syms to create symbolic functions. For example, you
can create an arbitrary function f(x, y) where x and y are function variables.
The simplest way to create an arbitrary symbolic function is to use syms:

syms f(x, y)

This syntax creates the symbolic function f and symbolic variables x and y.

Alternatively, you can use sym to create a symbolic function. Note that sym
only creates the function. It does not create symbolic variables that represent
its arguments. You must create these variables before creating a function:

syms x y;
f(x, y) = sym('f(x, y)');

1-10

Create Symbolic Variables and Expressions

If instead of an arbitrary symbolic function you want to create a function
defined by a particular mathematical expression, use this two-step approach.
First create symbolic variables representing the arguments of the function:

syms x y

Then assign a mathematical expression to the function. In this case, the
assignment operation also creates the new symbolic function:

f(x, y) = x^3*y^3

f(x, y) =
x^3*y^3

After creating a symbolic function, you can differentiate, integrate, or simplify
it, substitute its arguments with values, and perform other mathematical
operations. For example, find the second derivative on f(x, y) with respect
to variable y. The result d2fy is also a symbolic function.

d2fy = diff(f, y, 2)

d2fy(x, y) =
6*x^3*y

Now evaluate f(x, y) for x = y + 1:

f(y + 1, y)

ans =
y^3*(y + 1)^3

Create Symbolic Objects with Identical Names
If you set a variable equal to a symbolic expression, and then apply the syms
command to the variable, MATLAB software removes the previously defined
expression from the variable. For example,

syms a b
f = a + b

returns

f =

1-11

1 Getting Started

a + b

If later you enter

syms f
f

then MATLAB removes the value a + b from the expression f:

f =
f

You can use the syms command to clear variables of definitions that you
previously assigned to them in your MATLAB session. However, syms does not
clear the following assumptions of the variables: complex, real, and positive.
These assumptions are stored separately from the symbolic object. See “Delete
Symbolic Objects and Their Assumptions” on page 1-36 for more information.

Create a Matrix of Symbolic Variables

Use Existing Symbolic Objects as Elements
A circulant matrix has the property that each row is obtained from the
previous one by cyclically permuting the entries one step forward. For
example, create the symbolic circulant matrix whose elements are a, b, and c,
using the commands:

syms a b c
A = [a b c; c a b; b c a]

A =
[a, b, c]
[c, a, b]
[b, c, a]

Since matrix A is circulant, the sum of elements over each row and each
column is the same. Find the sum of all the elements of the first row:

sum(A(1,:))

ans =

1-12

Create Symbolic Variables and Expressions

a + b + c

To check if the sum of the elements of the first row equals the sum of the
elements of the second column, use the logical function:

logical(sum(A(1,:)) == sum(A(:,2)))

The sums are equal:

ans =
1

From this example, you can see that using symbolic objects is very similar to
using regular MATLAB numeric objects.

Generate Elements While Creating a Matrix
The sym function also lets you define a symbolic matrix or vector without
having to define its elements in advance. In this case, the sym function
generates the elements of a symbolic matrix at the same time that it creates a
matrix. The function presents all generated elements using the same form:
the base (which must be a valid variable name), a row index, and a column
index. Use the first argument of sym to specify the base for the names of
generated elements. You can use any valid variable name as a base. To check
whether the name is a valid variable name, use the isvarname function. By
default, sym separates a row index and a column index by underscore. For
example, create the 2-by-4 matrix A with the elements A1_1, ..., A2_4:

A = sym('A', [2 4])

A =
[A1_1, A1_2, A1_3, A1_4]
[A2_1, A2_2, A2_3, A2_4]

To control the format of the generated names of matrix elements, use %d
in the first argument:

A = sym('A%d%d', [2 4])

A =
[A11, A12, A13, A14]
[A21, A22, A23, A24]

1-13

1 Getting Started

Create a Matrix of Symbolic Numbers
A particularly effective use of sym is to convert a matrix from numeric to
symbolic form. The command

A = hilb(3)

generates the 3-by-3 Hilbert matrix:

A =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

By applying sym to A

A = sym(A)

you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

A =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

For more information on numeric to symbolic conversions, see “Estimate
Precision of Numeric to Symbolic Conversions” on page 1-22.

Find Symbolic Variables in Expressions, Functions,
Matrices
To find symbolic variables in an expression, function, or matrix, use symvar.
For example, find all symbolic variables in symbolic expressions f and g:

syms a b n t x
f = x^n;
g = sin(a*t + b);
symvar(f)

ans =
[n, x]

1-14

Create Symbolic Variables and Expressions

Here, symvar sorts all returned variables alphabetically. Similarly, you can
find the symbolic variables in g by entering:

symvar(g)

ans =
[a, b, t]

symvar also can return the first n symbolic variables found in a symbolic
expression, matrix, or function. To specify the number of symbolic variables
that you want symvar to return, use the second parameter of symvar. For
example, return the first two variables found in symbolic expression g:

symvar(g, 2)

ans =
[t, b]

Notice that the first two variables in this case are not a and b. When you call
symvar with two arguments, it sorts symbolic variables by their proximity to x.

You also can find symbolic variables in a function:

syms x y w z
f(w, z) = x*w + y*z;
symvar(f)

ans =
[w, x, y, z]

When you call symvar with two arguments, it returns the function inputs
in front of other variables:

symvar(f, 2)

ans =
[w, z]

Find a Default Symbolic Variable
If you do not specify an independent variable when performing substitution,
differentiation, or integration, MATLAB uses a default variable. The default

1-15

1 Getting Started

variable is typically the one closest alphabetically to x or, for symbolic
functions, the first input argument of a function. To find which variable is
chosen as a default variable, use the symvar(f, 1) command. For example:

syms s t
f = s + t;
symvar(f, 1)

ans =
t

syms sx tx
f = sx + tx;
symvar(f, 1)

ans =
tx

For more information on choosing the default symbolic variable, see symvar.

1-16

Perform Symbolic Computations

Perform Symbolic Computations

In this section...

“Simplify Symbolic Expressions” on page 1-17

“Substitutions in Symbolic Expressions” on page 1-19

“Estimate Precision of Numeric to Symbolic Conversions” on page 1-22

“Differentiate Symbolic Expressions” on page 1-24

“Integrate Symbolic Expressions” on page 1-26

“Solve Equations” on page 1-28

“Create Plots of Symbolic Functions” on page 1-29

Simplify Symbolic Expressions
Symbolic Math Toolbox provides a set of simplification functions allowing you
to manipulate the output of a symbolic expression. For example, the following
polynomial of the golden ratio phi

phi = sym('(1 + sqrt(5))/2');
f = phi^2 - phi - 1

returns

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

You can simplify this answer by entering

simplify(f)

and get a very short answer:

ans =
0

Symbolic simplification is not always so straightforward. There is no universal
simplification function, because the meaning of a simplest representation of
a symbolic expression cannot be defined clearly. Different problems require
different forms of the same mathematical expression. Knowing what form

1-17

1 Getting Started

is more effective for solving your particular problem, you can choose the
appropriate simplification function.

For example, to show the order of a polynomial or symbolically differentiate
or integrate a polynomial, use the standard polynomial form with all the
parentheses multiplied out and all the similar terms summed up. To rewrite
a polynomial in the standard form, use the expand function:

syms x
f = (x ^2- 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1);
expand(f)

ans =
x^10 - 1

The factor simplification function shows the polynomial roots. If a
polynomial cannot be factored over the rational numbers, the output of the
factor function is the standard polynomial form. For example, to factor the
third-order polynomial, enter:

syms x
g = x^3 + 6*x^2 + 11*x + 6;
factor(g)

ans =
(x + 3)*(x + 2)*(x + 1)

The nested (Horner) representation of a polynomial is the most efficient for
numerical evaluations:

syms x
h = x^5 + x^4 + x^3 + x^2 + x;
horner(h)

ans =
x*(x*(x*(x*(x + 1) + 1) + 1) + 1)

For a list of Symbolic Math Toolbox simplification functions, see
“Simplifications” on page 2-33.

1-18

Perform Symbolic Computations

Substitutions in Symbolic Expressions

Substitute Symbolic Variables with Numbers
You can substitute a symbolic variable with a numeric value by using the subs
function. For example, evaluate the symbolic expression f at the point x = 1/3:

syms x
f = 2*x^2 - 3*x + 1;
subs(f, 1/3)

ans =
2/9

The subs function does not change the original expression f:

f

f =
2*x^2 - 3*x + 1

Substitute in Multivariate Expressions
When your expression contains more than one variable, you can specify
the variable for which you want to make the substitution. For example, to
substitute the value x = 3 in the symbolic expression

syms x y
f = x^2*y + 5*x*sqrt(y);

enter the command

subs(f, x, 3)

ans =
9*y + 15*y^(1/2)

Substitute One Symbolic Variable for Another
You also can substitute one symbolic variable for another symbolic variable.
For example to replace the variable y with the variable x, enter

subs(f, y, x)

1-19

1 Getting Started

ans =
x^3 + 5*x^(3/2)

Substitute a Matrix into a Polynomial
You can also substitute a matrix into a symbolic polynomial with numeric
coefficients. There are two ways to substitute a matrix into a polynomial:
element by element and according to matrix multiplication rules.

Element-by-Element Substitution. To substitute a matrix at each element,
use the subs command:

syms x
f = x^3 - 15*x^2 - 24*x + 350;
A = [1 2 3; 4 5 6];
subs(f,A)

ans =
[312, 250, 170]
[78, -20, -118]

You can do element-by-element substitution for rectangular or square
matrices.

Substitution in a Matrix Sense. If you want to substitute a matrix into
a polynomial using standard matrix multiplication rules, a matrix must be
square. For example, you can substitute the magic square A into a polynomial
f:

1 Create the polynomial:

syms x
f = x^3 - 15*x^2 - 24*x + 350;

2 Create the magic square matrix:

A = magic(3)

A =
8 1 6
3 5 7
4 9 2

1-20

Perform Symbolic Computations

3 Get a row vector containing the numeric coefficients of the polynomial f:

b = sym2poly(f)

b =
1 -15 -24 350

4 Substitute the magic square matrix A into the polynomial f. Matrix A
replaces all occurrences of x in the polynomial. The constant times the
identity matrix eye(3) replaces the constant term of f:

A^3 - 15*A^2 - 24*A + 350*eye(3)

ans =
-10 0 0

0 -10 0
0 0 -10

The polyvalm command provides an easy way to obtain the same result:

polyvalm(b,A)

ans =
-10 0 0

0 -10 0
0 0 -10

Substitute the Elements of a Symbolic Matrix
To substitute a set of elements in a symbolic matrix, also use the subs
command. Suppose you want to replace some of the elements of a symbolic
circulant matrix A

syms a b c
A = [a b c; c a b; b c a]

A =
[a, b, c]
[c, a, b]
[b, c, a]

1-21

1 Getting Started

To replace the (2, 1) element of A with beta and the variable b throughout
the matrix with variable alpha, enter

alpha = sym('alpha');
beta = sym('beta');
A(2,1) = beta;
A = subs(A,b,alpha)

The result is the matrix:

A =
[a, alpha, c]
[beta, a, alpha]
[alpha, c, a]

For more information, see “Substitution”.

Estimate Precision of Numeric to Symbolic
Conversions
The sym command converts a numeric scalar or matrix to symbolic form. By
default, the sym command returns a rational approximation of a numeric
expression. For example, you can convert the standard double-precision
variable into a symbolic object:

t = 0.1;
sym(t)

ans =
1/10

The technique for converting floating-point numbers is specified by the
optional second argument, which can be 'f', 'r', 'e' or 'd'. The default
option is 'r', which stands for rational approximation “Conversion to
Rational Symbolic Form” on page 1-23.

Conversion to Floating-Point Symbolic Form
The 'f' option to sym converts double-precision floating-point numbers to
exact numeric values N*2^e, where e and N are integers, and N is nonnegative.
For example,

1-22

Perform Symbolic Computations

sym(t, 'f')

returns the symbolic floating-point representation:

ans =
3602879701896397/36028797018963968

Conversion to Rational Symbolic Form
If you call sym command with the 'r' option

sym(t, 'r')

you get the results in the rational form:

ans =
1/10

This is the default setting for the sym command. If you call this command
without any option, you get the result in the same rational form:

sym(t)

ans =
1/10

Conversion to Rational Symbolic Form with Machine Precision
If you call the sym command with the option 'e', it returns the rational form
of t plus the difference between the theoretical rational expression for t and
its actual (machine) floating-point value in terms of eps (the floating-point
relative precision):

sym(t, 'e')

ans =
eps/40 + 1/10

Conversion to Decimal Symbolic Form
If you call the sym command with the option 'd', it returns the decimal
expansion of t up to the number of significant digits:

1-23

1 Getting Started

sym(t, 'd')

ans =
0.10000000000000000555111512312578

By default, the sym(t,'d') command returns a number with 32 significant
digits. To change the number of significant digits, use the digits command:

digits(7);
sym(t, 'd')

ans =
0.1

Differentiate Symbolic Expressions
With the Symbolic Math Toolbox software, you can find

• Derivatives of single-variable expressions

• Partial derivatives

• Second and higher order derivatives

• Mixed derivatives

For in-depth information on taking symbolic derivatives see “Differentiation”
on page 2-3.

Expressions with One Variable
To differentiate a symbolic expression, use the diff command. The following
example illustrates how to take a first derivative of a symbolic expression:

syms x
f = sin(x)^2;
diff(f)

ans =
2*cos(x)*sin(x)

1-24

Perform Symbolic Computations

Partial Derivatives
For multivariable expressions, you can specify the differentiation variable.
If you do not specify any variable, MATLAB chooses a default variable by
its proximity to the letter x:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f)

ans =
2*cos(x)*sin(x)

For the complete set of rules MATLAB applies for choosing a default variable,
see “Find a Default Symbolic Variable” on page 1-15.

To differentiate the symbolic expression f with respect to a variable y, enter:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y)

ans =
-2*cos(y)*sin(y)

Second Partial and Mixed Derivatives
To take a second derivative of the symbolic expression f with respect to a
variable y, enter:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y, 2)

ans =
2*sin(y)^2 - 2*cos(y)^2

You get the same result by taking derivative twice: diff(diff(f, y)). To
take mixed derivatives, use two differentiation commands. For example:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(diff(f, y), x)

1-25

1 Getting Started

ans =
0

Integrate Symbolic Expressions
You can perform symbolic integration including:

• Indefinite and definite integration

• Integration of multivariable expressions

For in-depth information on the int command including integration with real
and complex parameters, see “Integration” on page 2-13.

Indefinite Integrals of One-Variable Expressions
Suppose you want to integrate a symbolic expression. The first step is to
create the symbolic expression:

syms x
f = sin(x)^2;

To find the indefinite integral, enter

int(f)

ans =
x/2 - sin(2*x)/4

Indefinite Integrals of Multivariable Expressions
If the expression depends on multiple symbolic variables, you can designate a
variable of integration. If you do not specify any variable, MATLAB chooses a
default variable by the proximity to the letter x:

syms x y n
f = x^n + y^n;
int(f)

ans =
x*y^n + (x*x^n)/(n + 1)

1-26

Perform Symbolic Computations

For the complete set of rules MATLAB applies for choosing a default variable,
see “Find a Default Symbolic Variable” on page 1-15.

You also can integrate the expression f = x^n + y^n with respect to y

syms x y n
f = x^n + y^n;
int(f, y)

ans =
x^n*y + (y*y^n)/(n + 1)

If the integration variable is n, enter

syms x y n
f = x^n + y^n;
int(f, n)

ans =
x^n/log(x) + y^n/log(y)

Definite Integrals
To find a definite integral, pass the limits of integration as the final two
arguments of the int function:

syms x y n
f = x^n + y^n;
int(f, 1, 10)

ans =
piecewise([n == -1, log(10) + 9/y], [n ~= -1, (10*10^n
- 1)/(n + 1) + 9*y^n])

If MATLAB Cannot Find a Closed Form of an Integral
If the int function cannot compute an integral, MATLAB issues a warning
and returns an unresolved integral:

syms x y n
f = sin(x)^(1/sqrt(n));
int(f, n, 1, 10)

1-27

1 Getting Started

Warning: Explicit integral could not be found.

ans =
int(sin(x)^(1/n^(1/2)), n == 1..10)

Solve Equations
You can solve different types of symbolic equations including:

• Algebraic equations with one symbolic variable

• Algebraic equations with several symbolic variables

• Systems of algebraic equations

For in-depth information on solving symbolic equations including differential
equations, see “Equation Solving”.

Solve Algebraic Equations with One Symbolic Variable
Use the double equal sign (==) to define an equation. Then you can solve the
equation by calling the solve function. For example, solve this equation:

syms x
solve(x^3 - 6*x^2 == 6 - 11*x)

ans =
1
2
3

If you do not specify the right side of the equation, solve assumes that it
is zero:

syms x
solve(x^3 - 6*x^2 + 11*x - 6)

ans =
1
2
3

1-28

Perform Symbolic Computations

Solve Algebraic Equations with Several Symbolic Variables
If an equation contains several symbolic variables, you can specify a
variable for which this equation should be solved. For example, solve this
multivariable equation with respect to y:

syms x y
solve(6*x^2 - 6*x^2*y + x*y^2 - x*y + y^3 - y^2 == 0, y)

ans =
1

2*x
-3*x

If you do not specify any variable, you get the solution of an equation for the
alphabetically closest to x variable. For the complete set of rules MATLAB
applies for choosing a default variable see “Find a Default Symbolic Variable”
on page 1-15.

Solve Systems of Algebraic Equations
You also can solve systems of equations. For example:

syms x y z
[x, y, z] = solve(z == 4*x, x == y, z == x^2 + y^2)

x =
0
2

y =
0
2

z =
0
8

Create Plots of Symbolic Functions
You can create different types of graphs including:

• Plots of explicit functions

1-29

1 Getting Started

• Plots of implicit functions

• 3-D parametric plots

• Surface plots

1-30

Perform Symbolic Computations

Explicit Function Plot
The simplest way to create a plot is to use the ezplot command:

syms x
ezplot(x^3 - 6*x^2 + 11*x - 6)
hold on

The hold on command retains the existing plot allowing you to add new
elements and change the appearance of the plot. For example, now you can
change the names of the axes and add a new title and grid lines. When you
finish working with the current plot, enter the hold off command:

xlabel('x axis')
ylabel('no name axis')
title('Explicit function: x^3 - 6*x^2 + 11*x - 6')
grid on
hold off

1-31

1 Getting Started

Implicit Function Plot
Using ezplot, you can also plot equations. For example, plot the following
equation over –1 < x < 1:

syms x y
ezplot((x^2 + y^2)^4 == (x^2 - y^2)^2, [-1 1])
hold on
xlabel('x axis')
ylabel('y axis')
grid on
hold off

1-32

Perform Symbolic Computations

3-D Plot
3-D graphics is also available in Symbolic Math Toolbox. To create a 3-D plot,
use the ezplot3 command. For example:

syms t
ezplot3(t^2*sin(10*t), t^2*cos(10*t), t)

1-33

1 Getting Started

Surface Plot
If you want to create a surface plot, use the ezsurf command. For example, to
plot a paraboloid z = x2 + y2, enter:

syms x y
ezsurf(x^2 + y^2)
hold on
zlabel('z')
title('z = x^2 + y^2')
hold off

1-34

Assumptions on Symbolic Objects

Assumptions on Symbolic Objects

In this section...

“Default Assumption” on page 1-35

“Set Assumptions” on page 1-35

“Check Existing Assumptions” on page 1-36

“Delete Symbolic Objects and Their Assumptions” on page 1-36

Default Assumption
In Symbolic Math Toolbox, symbolic variables are complex variables by
default. For example, if you declare z as a symbolic variable using

syms z

then MATLAB assumes that z is a complex variable. You can always check if
a symbolic variable is assumed to be complex or real by using assumptions. If
z is complex, assumptions(z) returns an empty symbolic object:

assumptions(z)

ans =
[empty sym]

Set Assumptions
To set an assumption on a symbolic variable, use the assume function. For
example, assume that the variable x is nonnegative:

syms x
assume(x >= 0)

assume replaces all previous assumptions on the variable with the new
assumption. If you want to add a new assumption to the existing assumptions,
use assumeAlso. For example, add the assumption that x is also an integer.
Now the variable x is a nonnegative integer:

assumeAlso(x,'integer')

1-35

1 Getting Started

assume and assumeAlso let you state that a variable or an expression belongs
to one of these sets: integers, rational numbers, and real numbers.

Alternatively, you can set an assumption while declaring a symbolic variable
using sym or syms. For example, create the real symbolic variables a and b,
and the positive symbolic variable c:

a = sym('a', 'real');
b = sym('b', 'real');
c = sym('c', 'positive');

or more efficiently:

syms a b real
syms c positive

There are two assumptions that you can assign to a symbolic object within the
sym or syms command: real and positive.

Check Existing Assumptions
To see all assumptions set on a symbolic variable, use the assumptions
function with the name of the variable as an input argument. For example,
this command returns the assumptions currently used for the variable x:

assumptions(x)

To see all assumptions used for all symbolic variables in the MATLAB
workspace, use assumptions without input arguments:

assumptions

For details, see “Check Assumptions Set On Variables” on page 3-44.

Delete Symbolic Objects and Their Assumptions
Symbolic objects and their assumptions are stored separately. When you set
an assumption that x is real using

syms x
assume(x,'real')

1-36

Assumptions on Symbolic Objects

you actually create a symbolic object x and the assumption that the object is
real. The object is stored in the MATLAB workspace, and the assumption is
stored in the symbolic engine. When you delete a symbolic object from the
MATLAB workspace using

clear x

the assumption that x is real stays in the symbolic engine. If you declare a
new symbolic variable x later, it inherits the assumption that x is real instead
of getting a default assumption. If later you solve an equation and simplify
an expression with the symbolic variable x, you could get incomplete results.
For example, the assumption that x is real causes the polynomial x2 + 1 to
have no roots:

syms x real
clear x
syms x
solve(x^2 + 1 == 0, x)

Warning: Explicit solution could not be found.
> In solve at 81

ans =
[empty sym]

The complex roots of this polynomial disappear because the symbolic variable
x still has the assumption that x is real stored in the symbolic engine. To
clear the assumption, enter

syms x clear

After you clear the assumption, the symbolic object stays in the MATLAB
workspace. If you want to remove both the symbolic object and its assumption,
use two subsequent commands:

1 To clear the assumption, enter

syms x clear

2 To delete the symbolic object, enter

clear x;

1-37

1 Getting Started

For details on clearing symbolic variables, see “Clear Assumptions and Reset
the Symbolic Engine” on page 3-43.

1-38

2

Using Symbolic Math
Toolbox Software

• “Differentiation” on page 2-3

• “Limits” on page 2-10

• “Integration” on page 2-13

• “Symbolic Summation” on page 2-21

• “Taylor Series” on page 2-22

• “Find Asymptotes, Critical and Inflection Points” on page 2-25

• “Simplifications” on page 2-33

• “Substitute with subexpr” on page 2-41

• “Substitute with subs” on page 2-43

• “Combine subs and double for Numeric Evaluations” on page 2-47

• “Variable-Precision Arithmetic” on page 2-50

• “Basic Algebraic Operations” on page 2-56

• “Linear Algebraic Operations” on page 2-58

• “Eigenvalues” on page 2-64

• “Jordan Canonical Form” on page 2-69

• “Singular Value Decomposition” on page 2-71

• “Eigenvalue Trajectories” on page 2-73

• “Solve an Algebraic Equation” on page 2-83

• “Solve a System of Algebraic Equations” on page 2-85

2 Using Symbolic Math Toolbox™ Software

• “Solve a Single Differential Equation” on page 2-88

• “Solve a System of Differential Equations” on page 2-92

• “Compute Fourier and Inverse Fourier Transforms” on page 2-94

• “Compute Laplace and Inverse Laplace Transforms” on page 2-101

• “Compute Z-Transforms and Inverse Z-Transforms” on page 2-108

• “Create Plots” on page 2-112

• “Explore Function Plots” on page 2-125

• “Edit Graphs” on page 2-127

• “Save Graphs” on page 2-128

• “Generate C or Fortran Code” on page 2-129

• “Generate MATLAB Functions” on page 2-131

• “Generate MATLAB Function Blocks” on page 2-136

• “Generate Simscape Equations” on page 2-139

• “Special Functions of Applied Mathematics” on page 2-142

2-2

Differentiation

Differentiation
To illustrate how to take derivatives using Symbolic Math Toolbox software,
first create a symbolic expression:

syms x
f = sin(5*x);

The command

diff(f)

differentiates f with respect to x:

ans =
5*cos(5*x)

As another example, let

g = exp(x)*cos(x);

where exp(x) denotes ex, and differentiate g:

diff(g)

ans =
exp(x)*cos(x) - exp(x)*sin(x)

To take the second derivative of g, enter

diff(g,2)

ans =
-2*exp(x)*sin(x)

You can get the same result by taking the derivative twice:

diff(diff(g))

ans =
-2*exp(x)*sin(x)

2-3

2 Using Symbolic Math Toolbox™ Software

In this example, MATLAB software automatically simplifies the answer.
However, in some cases, MATLAB might not simply an answer, in which case
you can use the simplify command. For an example of such simplification,
see “More Examples” on page 2-5.

Note that to take the derivative of a constant, you must first define the
constant as a symbolic expression. For example, entering

c = sym('5');
diff(c)

returns

ans =
0

If you just enter

diff(5)

MATLAB returns

ans =
[]

because 5 is not a symbolic expression.

Derivatives of Expressions with Several Variables
To differentiate an expression that contains more than one symbolic variable,
specify the variable that you want to differentiate with respect to. The diff
command then calculates the partial derivative of the expression with respect
to that variable. For example, given the symbolic expression

syms s t
f = sin(s*t);

the command

diff(f,t)

calculates the partial derivative ∂ ∂f t/ . The result is

2-4

Differentiation

ans =
s*cos(s*t)

To differentiate f with respect to the variable s, enter

diff(f,s)

which returns:

ans =
t*cos(s*t)

If you do not specify a variable to differentiate with respect to, MATLAB
chooses a default variable. Basically, the default variable is the letter
closest to x in the alphabet. See the complete set of rules in “Find a Default
Symbolic Variable” on page 1-15. In the preceding example, diff(f) takes
the derivative of f with respect to t because the letter t is closer to x in the
alphabet than the letter s is. To determine the default variable that MATLAB
differentiates with respect to, use symvar:

symvar(f, 1)

ans =
t

Calculate the second derivative of f with respect to t:

diff(f, t, 2)

This command returns

ans =
-s^2*sin(s*t)

Note that diff(f, 2) returns the same answer because t is the default
variable.

More Examples
To further illustrate the diff command, define a, b, x, n, t, and theta in
the MATLAB workspace by entering

syms a b x n t theta

2-5

2 Using Symbolic Math Toolbox™ Software

This table illustrates the results of entering diff(f).

f diff(f)

syms x n
f = x^n;

diff(f)

ans =
n*x^(n - 1)

syms a b t
f = sin(a*t + b);

diff(f)

ans =
a*cos(b + a*t)

syms theta
f = exp(i*theta);

diff(f)

ans =
exp(theta*i)*i

To differentiate the Bessel function of the first kind, besselj(nu,z), with
respect to z, type

syms nu z
b = besselj(nu,z);
db = diff(b)

which returns

db =
(nu*besselj(nu, z))/z - besselj(nu + 1, z)

The diff function can also take a symbolic matrix as its input. In this case,
the differentiation is done element-by-element. Consider the example

syms a x
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

2-6

Differentiation

A =
[cos(a*x), sin(a*x)]
[-sin(a*x), cos(a*x)]

The command

diff(A)

returns

ans =
[-a*sin(a*x), a*cos(a*x)]
[-a*cos(a*x), -a*sin(a*x)]

You can also perform differentiation of a vector function with respect to a
vector argument. Consider the transformation from Euclidean (x, y, z) to

spherical (, ,)r coordinates as given by x r= cos cos , y r= cos sin , and
z r= sin . Note that corresponds to elevation or latitude while denotes
azimuth or longitude.

To calculate the Jacobian matrix, J, of this transformation, use the jacobian
function. The mathematical notation for J is

J
x y z
r

= ∂
∂ ()

(, ,)
, ,

.

2-7

2 Using Symbolic Math Toolbox™ Software

For the purposes of toolbox syntax, use l for and f for . The commands

syms r l f
x = r*cos(l)*cos(f); y = r*cos(l)*sin(f); z = r*sin(l);
J = jacobian([x; y; z], [r l f])

return the Jacobian

J =
[cos(f)*cos(l), -r*cos(f)*sin(l), -r*cos(l)*sin(f)]
[cos(l)*sin(f), -r*sin(f)*sin(l), r*cos(f)*cos(l)]
[sin(l), r*cos(l), 0]

and the command

detJ = simplify(det(J))

returns

detJ =
-r^2*cos(l)

The arguments of the jacobian function can be column or row vectors.
Moreover, since the determinant of the Jacobian is a rather complicated
trigonometric expression, you can use simplify to make trigonometric
substitutions and reductions (simplifications).

A table summarizing diff and jacobian follows.

Mathematical
Operator MATLAB Command

df
dx

diff(f) or diff(f, x)

df
da

diff(f, a)

2-8

Differentiation

Mathematical
Operator MATLAB Command

d f

db

2

2

diff(f, b, 2)

J
r t
u v

= ∂
∂

(,)
(,)

J = jacobian([r; t],[u; v])

2-9

2 Using Symbolic Math Toolbox™ Software

Limits
The fundamental idea in calculus is to make calculations on functions as
a variable “gets close to” or approaches a certain value. Recall that the
definition of the derivative is given by a limit

f x
f x h f x

hh
’() lim

() ()
,= + −

→0

provided this limit exists. Symbolic Math Toolbox software enables you to
calculate the limits of functions directly. The commands

syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)

which return

ans =
-sin(x)

and

limit((1 + x/n)^n, n, inf)

which returns

ans =
exp(x)

illustrate two of the most important limits in mathematics: the derivative (in
this case of cos(x)) and the exponential function.

One-Sided Limits
You can also calculate one-sided limits with Symbolic Math Toolbox software.
For example, you can calculate the limit of x/|x|, whose graph is shown in the
following figure, as x approaches 0 from the left or from the right.

2-10

Limits

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

x/abs(x)

To calculate the limit as x approaches 0 from the left,

lim ,
x

x
x→ −0

enter

syms x
limit(x/abs(x), x, 0, 'left')

ans =
-1

To calculate the limit as x approaches 0 from the right,

lim ,
x

x
x→ +
=

0
1

2-11

2 Using Symbolic Math Toolbox™ Software

enter

syms x
limit(x/abs(x), x, 0, 'right')

ans =
1

Since the limit from the left does not equal the limit from the right, the two-
sided limit does not exist. In the case of undefined limits, MATLAB returns
NaN (not a number). For example,

syms x
limit(x/abs(x), x, 0)

returns

ans =
NaN

Observe that the default case, limit(f) is the same as limit(f,x,0).
Explore the options for the limit command in this table, where f is a function
of the symbolic object x.

Mathematical
Operation MATLAB Command

lim ()
x

f x
→0

limit(f)

lim ()
x a

f x
→

limit(f, x, a) or

limit(f, a)

lim ()
x a

f x
→ −

limit(f, x, a, 'left')

lim ()
x a

f x
→ +

limit(f, x, a, 'right')

2-12

Integration

Integration
If f is a symbolic expression, then

int(f)

attempts to find another symbolic expression, F, so that diff(F) = f. That
is, int(f) returns the indefinite integral or antiderivative of f (provided one
exists in closed form). Similar to differentiation,

int(f,v)

uses the symbolic object v as the variable of integration, rather than the
variable determined by symvar. See how int works by looking at this table.

Mathematical Operation MATLAB Command

x dx
x n

x
n

n n∫ =
= −

+

⎧
⎨
⎪

⎩⎪
+

log() if

otherwise.

1

1

1

int(x^n) or int(x^n,x)

sin()
/

2 1
0

2

x dx =∫
 int(sin(2*x), 0, pi/2) or

int(sin(2*x), x, 0, pi/2)

g = cos(at + b)

g t dt at b a() sin() /= +∫
g = cos(a*t + b) int(g) or int(g, t)

J z dz J z1 0() ()= −∫ int(besselj(1, z)) or int(besselj(1,
z), z)

In contrast to differentiation, symbolic integration is a more complicated task.
A number of difficulties can arise in computing the integral:

• The antiderivative, F, may not exist in closed form.

• The antiderivative may define an unfamiliar function.

• The antiderivative may exist, but the software can’t find it.

2-13

2 Using Symbolic Math Toolbox™ Software

• The software could find the antiderivative on a larger computer, but runs
out of time or memory on the available machine.

Nevertheless, in many cases, MATLAB can perform symbolic integration
successfully. For example, create the symbolic variables

syms a b theta x y n u z

The following table illustrates integration of expressions containing those
variables.

f int(f)

syms x n
f = x^n;

int(f)

ans =
piecewise([n == -1, log(x)], [n ~= -1,
x^(n + 1)/(n + 1)])

syms y
f = y^(-1);

int(f)

ans =
log(y)

syms x n
f = n^x;

int(f)

ans =
n^x/log(n)

syms a b theta
f =
sin(a*theta+b);

int(f)

ans =
-cos(b + a*theta)/a

2-14

Integration

f int(f)

syms u
f = 1/(1+u^2);

int(f)

ans =
atan(u)

syms x
f = exp(-x^2);

int(f)

ans =
(pi^(1/2)*erf(x))/2

In the last example, exp(-x^2), there is no formula for the integral involving
standard calculus expressions, such as trigonometric and exponential
functions. In this case, MATLAB returns an answer in terms of the error
function erf.

If MATLAB is unable to find an answer to the integral of a function f, it
just returns int(f).

Definite integration is also possible.

Definite Integral Command

f x dx
a

b
()∫

int(f, a, b)

f v dv
a

b
()∫

int(f, v, a, b)

Here are some additional examples.

2-15

2 Using Symbolic Math Toolbox™ Software

f a, b int(f, a, b)

syms x
f = x^7;

a = 0;
b = 1;

int(f, a, b)

ans =
1/8

syms x
f = 1/x;

a = 1;
b = 2;

int(f, a, b)

ans =
log(2)

syms x
f =
log(x)*sqrt(x);

a = 0;
b = 1;

int(f, a, b)

ans =
-4/9

syms x
f = exp(-x^2);

a = 0;
b = inf;

int(f, a, b)

ans =
pi^(1/2)/2

syms z
f =
besselj(1,z)^2;

a = 0;
b = 1;

int(f, a, b)

ans =
hypergeom([3/2, 3/2], [2,
5/2, 3], -1)/12

For the Bessel function (besselj) example, it is possible to compute a
numerical approximation to the value of the integral, using the double
function. The commands

syms z
a = int(besselj(1,z)^2,0,1)

return

2-16

Integration

a =
hypergeom([3/2, 3/2], [2, 5/2, 3], -1)/12

and the command

a = double(a)

returns

a =
0.0717

Integration with Real Parameters
One of the subtleties involved in symbolic integration is the “value” of various
parameters. For example, if a is any positive real number, the expression

e ax− 2

is the positive, bell shaped curve that tends to 0 as x tends to ±∞. You can
create an example of this curve, for a = 1/2, using the following commands:

syms x
a = sym(1/2);
f = exp(-a*x^2);
ezplot(f)

2-17

2 Using Symbolic Math Toolbox™ Software

However, if you try to calculate the integral

e dxax−

−∞

∞

∫
2

without assigning a value to a, MATLAB assumes that a represents a complex
number, and therefore returns a piecewise answer that depends on the
argument of a. If you are only interested in the case when a is a positive real
number, use assume to set an assumption on a:

syms a
assume(a > 0);

2-18

Integration

Now you can calculate the preceding integral using the commands

syms x
f = exp(-a*x^2);
int(f, x, -inf, inf)

This returns

ans =
pi^(1/2)/a^(1/2)

Integration with Complex Parameters
To calculate the integral

1
2 2a x

dx
+−∞

∞

∫

for complex values of a, enter

syms a x clear
f = 1/(a^2 + x^2);
F = int(f, x, -inf, inf)

syms is used with the clear option to clear the all assumptions on a. For more
information about symbolic variables and assumptions on them, see “Delete
Symbolic Objects and Their Assumptions” on page 1-36.

The preceding commands produce the complex output

F =
(pi*signIm(i/a))/a

The function signIm is defined as:

signIm
if or and
if

-1 otherwi
()

Im() , Im()
z

z z z
z=

> = <
=

1 0 0 0
0 0

sse.

⎧
⎨
⎪

⎩⎪

2-19

2 Using Symbolic Math Toolbox™ Software

�������	�

�������	��

�������	��

�

�

�������	�

�������	��

To evaluate F at a = 1 + i, enter

g = subs(F, 1 + i)

g =
pi*(1/2 - i/2)

double(g)

ans =
1.5708 - 1.5708i

2-20

Symbolic Summation

Symbolic Summation
You can compute symbolic summations, when they exist, by using the symsum
command. For example, the p-series

1
1

2

1

32 2
+ + + ...

sums to 2 6/ , while the geometric series

1 + x + x2 + ...

sums to 1/(1 – x), provided x < 1 . These summations are demonstrated below:

syms x k
s1 = symsum(1/k^2, 1, inf)
s2 = symsum(x^k, k, 0, inf)

s1 =
pi^2/6

s2 =
piecewise([1 <= x, Inf], [abs(x) < 1, -1/(x - 1)])

2-21

2 Using Symbolic Math Toolbox™ Software

Taylor Series
The statements

syms x
f = 1/(5 + 4*cos(x));
T = taylor(f, 'Order', 8)

return

T =
(49*x^6)/131220 + (5*x^4)/1458 + (2*x^2)/81 + 1/9

which is all the terms up to, but not including, order eight in the Taylor series
for f(x):

()
()
!

.
()

x a
f a

n
n

n

n

−
=

∞

∑
0

Technically, T is a Maclaurin series, since its expansion point is a = 0.

The command

pretty(T)

prints T in a format resembling typeset mathematics:

6 4 2
49 x 5 x 2 x
------ + ---- + ---- + 1/9
131220 1458 81

These commands

syms x
g = exp(x*sin(x));
t = taylor(g, 'ExpansionPoint', 2, 'Order', 12);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

2-22

Taylor Series

t is a large expression; enter

size(char(t))

ans =
1 99791

to find that t has about 100,000 characters in its printed form. In order to
proceed with using t, first simplify its presentation:

t = simplify(t);
size(char(t))

ans =
1 6988

Next, plot these functions together to see how well this Taylor approximation
compares to the actual function g:

xd = 1:0.05:3; yd = subs(g,x,xd);
ezplot(t, [1, 3]); hold on;
plot(xd, yd, 'r-.')
title('Taylor approximation vs. actual function');
legend('Taylor','Function')

2-23

2 Using Symbolic Math Toolbox™ Software

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

2

3

4

5

6

x

Taylor approximation vs. actual function

Taylor
Function

Special thanks is given to Professor Gunnar Bäckstrøm of UMEA in Sweden
for this example.

2-24

Find Asymptotes, Critical and Inflection Points

Find Asymptotes, Critical and Inflection Points
This section describes how to analyze a simple function to find its asymptotes,
maximum, minimum, and inflection point. The section covers the following
topics:

In this section...

“Define a Function” on page 2-25

“Find Asymptotes” on page 2-26

“Find Maximum and Minimum” on page 2-28

“Find Inflection Point” on page 2-30

Define a Function
The function in this example is

f x
x x

x x
() .= + −

+ −
3 6 1

3

2

2

To create the function, enter the following commands:

syms x
num = 3*x^2 + 6*x -1;
denom = x^2 + x - 3;
f = num/denom

This returns

f =
(3*x^2 + 6*x - 1)/(x^2 + x - 3)

You can plot the graph of f by entering

ezplot(f)

This displays the following plot.

2-25

2 Using Symbolic Math Toolbox™ Software

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x

(3 x2+6 x−1)/(x2+x−3)

Find Asymptotes
To find the horizontal asymptote of the graph of f, take the limit of f as x
approaches positive infinity:

limit(f, inf)

ans =
3

The limit as x approaches negative infinity is also 3. This tells you that the
line y = 3 is a horizontal asymptote to the graph.

To find the vertical asymptotes of f, set the denominator equal to 0 and solve
by entering the following command:

roots = solve(denom)

This returns to solutions to x x2 3 0+ − = :

roots =

2-26

Find Asymptotes, Critical and Inflection Points

13^(1/2)/2 - 1/2
- 13^(1/2)/2 - 1/2

This tells you that vertical asymptotes are the lines

x = − +1 13
2

,

and

x = − −1 13
2

.

You can plot the horizontal and vertical asymptotes with the following
commands:

ezplot(f)
hold on % Keep the graph of f in the figure
% Plot horizontal asymptote
plot([-2*pi 2*pi], [3 3],'g')
% Plot vertical asymptotes
plot(double(roots(1))*[1 1], [-5 10],'r')
plot(double(roots(2))*[1 1], [-5 10],'r')
title('Horizontal and Vertical Asymptotes')
hold off

Note that roots must be converted to double to use the plot command.

The preceding commands display the following figure.

2-27

2 Using Symbolic Math Toolbox™ Software

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x

Horizontal and Vertical Asymptotes

To recover the graph of f without the asymptotes, enter

ezplot(f)

Find Maximum and Minimum
You can see from the graph that f has a local maximum somewhere between
the points x = –2 and x = 0, and might have a local minimum between x =
–6 and x = –2. To find the x-coordinates of the maximum and minimum,
first take the derivative of f:

f1 = diff(f)

f1 =
(6*x + 6)/(x^2 + x - 3) - ((2*x + 1)*(3*x^2 + 6*x -
1))/(x^2 + x - 3)^2

To simplify this expression, enter

f1 = simplify(f1)

f1 =

2-28

Find Asymptotes, Critical and Inflection Points

-(3*x^2 + 16*x + 17)/(x^2 + x - 3)^2

You can display f1 in a more readable form by entering

pretty(f1)

which returns

2
3 x + 16 x + 17

- ----------------
2 2

(x + x - 3)

Next, set the derivative equal to 0 and solve for the critical points:

crit_pts = solve(f1)

crit_pts =

13^(1/2)/3 - 8/3
- 13^(1/2)/3 - 8/3

It is clear from the graph of f that it has a local minimum at

x1
8 13

3
= − −

,

and a local maximum at

x2
8 13

3
= − +

.

Note MATLAB does not always return the roots to an equation in the same
order.

2-29

2 Using Symbolic Math Toolbox™ Software

You can plot the maximum and minimum of f with the following commands:

ezplot(f)
hold on
plot(double(crit_pts), double(subs(f,crit_pts)),'ro')
title('Maximum and Minimum of f')
text(-5.5,3.2,'Local minimum')
text(-2.5,2,'Local maximum')
hold off

This displays the following figure.

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x

Maximum and Minimum of f

Local minimum

Local maximum

Find Inflection Point
To find the inflection point of f, set the second derivative equal to 0 and solve.

f2 = diff(f1);
inflec_pt = solve(f2);
double(inflec_pt)

This returns

2-30

Find Asymptotes, Critical and Inflection Points

ans =
-5.2635
-1.3682 + 0.8511i
-1.3682 - 0.8511i

In this example, only the first entry is a real number, so this is the only
inflection point. (Note that in other examples, the real solutions might not
be the first entries of the answer.) Since you are only interested in the real
solutions, you can discard the last two entries, which are complex numbers.

inflec_pt = inflec_pt(1);

To see the symbolic expression for the inflection point, enter

pretty(simplify(inflec_pt))

2/3 1/3 1/2 1/3 2/3 1/3 1/2 1/3
2 13 (13 - 3 13) 2 13 (3 13 + 13)

- ---------------------------- - ---------------------------- - 8/3
6 6

To plot the inflection point, enter

ezplot(f, [-9 6])
hold on
plot(double(inflec_pt), double(subs(f,inflec_pt)),'ro')
title('Inflection Point of f')
text(-7,2,'Inflection point')
hold off

The extra argument, [-9 6], in ezplot extends the range of x values in
the plot so that you see the inflection point more clearly, as shown in the
following figure.

2-31

2 Using Symbolic Math Toolbox™ Software

−8 −6 −4 −2 0 2 4 6

−2

0

2

4

6

8

x

Inflection Point of f

Inflection point

2-32

Simplifications

Simplifications
Here are three different symbolic expressions.

syms x
f = x^3 - 6*x^2 + 11*x - 6;
g = (x - 1)*(x - 2)*(x - 3);
h = -6 + (11 + (-6 + x)*x)*x;

Here are their prettyprinted forms, generated by

pretty(f)
pretty(g)
pretty(h)

3 2
x - 6 x + 11 x - 6

(x - 1) (x - 2) (x - 3)

x (x (x - 6) + 11) - 6

These expressions are three different representations of the same
mathematical function, a cubic polynomial in x.

Each of the three forms is preferable to the others in different situations. The
first form, f, is the most commonly used representation of a polynomial. It
is simply a linear combination of the powers of x. The second form, g, is the
factored form. It displays the roots of the polynomial and is the most accurate
for numerical evaluation near the roots. But, if a polynomial does not have
such simple roots, its factored form may not be so convenient. The third form,
h, is the Horner, or nested, representation. For numerical evaluation, it
involves the fewest arithmetic operations and is the most accurate for some
other ranges of x.

The symbolic simplification problem involves the verification that these three
expressions represent the same function. It also involves a less clearly defined
objective — which of these representations is “the simplest”?

2-33

2 Using Symbolic Math Toolbox™ Software

This toolbox provides several functions that apply various algebraic and
trigonometric identities to transform one representation of a function into
another, possibly simpler, representation. These functions are collect,
expand, horner, factor, and simplify.

collect
The statementcollect(f) views f as a polynomial in its symbolic variable,
say x, and collects all the coefficients with the same power of x. A second
argument can specify the variable in which to collect terms if there is more
than one candidate. Here are a few examples.

f collect(f)

syms x
f = (x-1)*(x-2)*(x-3);

collect(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms x
f = x*(x*(x - 6) +
11) - 6;

collect(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms x t
f = (1+x)*t + x*t;

collect(f)

ans =
(2*t)*x + t

expand
The statement expand(f) distributes products over sums and applies other
identities involving functions of sums as shown in the examples below.

2-34

Simplifications

f expand(f)

syms a x y
f = a*(x + y);

expand(f)

ans =
a*x + a*y

syms x
f = (x - 1)*(x -
2)*(x - 3);

expand(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms x
f = x*(x*(x - 6)
+ 11) - 6;

expand(f)

ans =
x^3 - 6*x^2 + 11*x - 6

syms a b
f = exp(a + b);

expand(f)

ans =
exp(a)*exp(b)

syms x y
f = cos(x + y);

expand(f)

ans =
cos(x)*cos(y) - sin(x)*sin(y)

syms x
f =
cos(3*acos(x));

expand(f)

ans =
4*x^3 - 3*x

syms x
f = 3*x*(x^2 -
1) + x^3;

expand(f)

ans =
4*x^3 - 3*x

2-35

2 Using Symbolic Math Toolbox™ Software

horner
The statement horner(f) transforms a symbolic polynomial f into its Horner,
or nested, representation as shown in the following examples.

f horner(f)

syms x
f = x^3 - 6*x^2
+ 11*x - 6;

horner(f)

ans =
x*(x*(x - 6) + 11) - 6

syms x
f = 1.1 + 2.2*x
+ 3.3*x^2;

horner(f)

ans =
x*((33*x)/10 + 11/5) + 11/10

factor
If f is a polynomial with rational coefficients, the statement

factor(f)

expresses f as a product of polynomials of lower degree with rational
coefficients. If f cannot be factored over the rational numbers, the result is
f itself. Here are several examples.

f factor(f)

syms x
f = x^3 - 6*x^2
+ 11*x - 6;

factor(f)

ans =
(x - 3)*(x - 1)*(x - 2)

syms x
f = x^3 - 6*x^2
+ 11*x - 5;

factor(f)

ans =

2-36

Simplifications

f factor(f)

x^3 - 6*x^2 + 11*x - 5

syms x
f = x^6 + 1;

factor(f)

ans =
(x^2 + 1)*(x^4 - x^2 + 1)

Here is another example involving factor. It factors polynomials of the form
x^n + 1. This code

syms x
n = (1:9)';
p = x.^n + 1;
f = factor(p);
[p, f]

returns a matrix with the polynomials in its first column and their factored
forms in its second.

ans =
[x + 1, x + 1]
[x^2 + 1, x^2 + 1]
[x^3 + 1, (x + 1)*(x^2 - x + 1)]
[x^4 + 1, x^4 + 1]
[x^5 + 1, (x + 1)*(x^4 - x^3 + x^2 - x + 1)]
[x^6 + 1, (x^2 + 1)*(x^4 - x^2 + 1)]
[x^7 + 1, (x + 1)*(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)]
[x^8 + 1, x^8 + 1]
[x^9 + 1, (x + 1)*(x^2 - x + 1)*(x^6 - x^3 + 1)]

As an aside at this point, factor can also factor symbolic objects containing
integers. This is an alternative to using the factor function in the MATLAB
specfun folder. For example, the following code segment

N = sym(1);
for k = 2:11

N(k) = 10*N(k-1)+1;
end

2-37

2 Using Symbolic Math Toolbox™ Software

[N' factor(N')]

displays the factors of symbolic integers consisting of 1s:

ans =
[1, 1]
[11, 11]
[111, 3*37]
[1111, 11*101]
[11111, 41*271]
[111111, 3*7*11*13*37]
[1111111, 239*4649]
[11111111, 11*73*101*137]
[111111111, 3^2*37*333667]
[1111111111, 11*41*271*9091]
[11111111111, 21649*513239]

simplifyFraction
The statement simplifyFraction(f) represents the expression f as a
fraction where both the numerator and denominator are polynomials whose
greatest common divisor is 1. The Expand option lets you expand the
numerator and denominator in the resulting expression.

simplifyFraction is significantly more efficient for simplifying fractions
than the general simplification function simplify.

f simplifyFraction(f)

syms x
f =(x^3 - 1)/(x
- 1);

simplifyFraction(f)

ans =
x^2 + x + 1

syms x
f = (x^3 - x^2*y -
x*y^2 + y^3)/(x^3
+ y^3);

simplifyFraction(f)

ans =
(x^2 - 2*x*y + y^2)/(x^2 - x*y + y^2)

syms x simplifyFraction(f)

2-38

Simplifications

f simplifyFraction(f)

f = (1 -
exp(x)^4)/(1 +
exp(x))^4;

ans =
(exp(2*x) - exp(3*x) - exp(x) +
1)/(exp(x) + 1)^3

simplifyFraction(f, 'Expand', true)

ans =
(exp(2*x) - exp(3*x) - exp(x) +
1)/(3*exp(2*x) + exp(3*x) + 3*exp(x) + 1)

simplify
The simplify function is a powerful, general purpose tool that applies a
number of algebraic identities involving sums, integral powers, square roots
and other fractional powers, as well as a number of functional identities
involving trig functions, exponential and log functions, Bessel functions,
hypergeometric functions, and the gamma function. Here are some examples.

f simplify(f)

syms x
f = (1 - x^2)/(1 - x);

simplify(f)

ans =
x + 1

syms a
f = (1/a^3 + 6/a^2 + 12/a
+ 8)^(1/3);

simplify(f)

ans =
((2*a + 1)^3/a^3)^(1/3)

syms x y
f = exp(x) * exp(y);

simplify(f)

ans =
exp(x + y)

2-39

2 Using Symbolic Math Toolbox™ Software

f simplify(f)

syms x
f = besselj(2, x) +
besselj(0, x);

simplify(f)

ans =
(2*besselj(1, x))/x

syms x
f = gamma(x + 1) -
x*gamma(x);

simplify(f)

ans =
0

syms x
f = cos(x)^2 + sin(x)^2;

simplify(f)

ans =
1

You can also use the syntax simplify(f, 'Steps', n) where n is a positive
integer that controls how many steps simplify takes. By default, n = 1.
For example,

syms x

z = (cos(x)^2 - sin(x)^2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/(exp(2*x) - 1);

simplify(z)

ans =
(sin(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))

simplify(z, 'Steps', 30)

ans =
(sin(4*x)*tanh(x/2))/2

2-40

Substitute with subexpr

Substitute with subexpr
These commands solve the equation x^3 + a*x + 1 = 0 for the variable x:

syms a x
s = solve(x^3 + a*x + 1)

s =
((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3) -...
a/(3*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3))

(3^(1/2)*(a/(3*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) +...
((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3))*i)/2 +...
a/(6*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) -...
((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)/2

a/(6*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) -...
(3^(1/2)*(a/(3*((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)) +...
((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3))*i)/2 -...
((a^3/27 + 1/4)^(1/2) - 1/2)^(1/3)/2

This long expression has many repeated pieces, or subexpressions. The
subexpr function allows you to save these common subexpressions as
well as the symbolic object rewritten in terms of the subexpressions. The
subexpressions are saved in a column vector called sigma.

Continuing with the example

r = subexpr(s)

returns

sigma =

(a^3/27 + 1/4)^(1/2) - 1/2

r =

sigma^(1/3) - a/(3*sigma^(1/3))

(3^(1/2)*(a/(3*sigma^(1/3)) + sigma^(1/3))*i)/2 + a/(6*sigma^(1/3)) - sigma^(1/3)/2

a/(6*sigma^(1/3)) - (3^(1/2)*(a/(3*sigma^(1/3)) + sigma^(1/3))*i)/2 - sigma^(1/3)/2

2-41

2 Using Symbolic Math Toolbox™ Software

Notice that subexpr creates the variable sigma in the MATLAB workspace.
You can verify this by typing whos, or the command

sigma

which returns

sigma =
(a^3/27 + 1/4)^(1/2) - 1/2

You can use other variable names instead of sigma. For example, replace
the common subexpression in s by u:

r1 = subexpr(s,'u')

u =

(a^3/27 + 1/4)^(1/2) - 1/2

r1 =

u^(1/3) - a/(3*u^(1/3))

(3^(1/2)*(a/(3*u^(1/3)) + u^(1/3))*i)/2 + a/(6*u^(1/3)) - u^(1/3)/2

a/(6*u^(1/3)) - (3^(1/2)*(a/(3*u^(1/3)) + u^(1/3))*i)/2 - u^(1/3)/2

subexpr does not let you control which subexpressions need to be replaced.

2-42

Substitute with subs

Substitute with subs
Use this code to find the eigenvalues and eigenvectors of a circulant matrix A:

syms a b c

A = [a b c; b c a; c a b];

[v,E] = eig(A)

v =

[- (a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (a - b)/(a - c),...

(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (a - b)/(a - c), 1]

[(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (b - c)/(a - c),...

- (a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)/(a - c) - (b - c)/(a - c), 1]

[1, 1, 1]

E =

[(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2), 0, 0]

[0, -(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2), 0]

[0, 0, a + b + c]

Note MATLAB might return the eigenvalues that appear on the diagonal of E
in a different order. In this case, the corresponding eigenvectors, which are
the columns of v, also appear in a different order.

Replace the rather lengthy expression (a^2 - a*b - a*c + b^2 - b*c +
c^2)^(1/2) throughout v and E:

syms S
v = subs(v,(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2), S)
E = subs(E,(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2), S)

v =
[- S/(a - c) - (a - b)/(a - c), S/(a - c) - (a - b)/(a - c), 1]
[S/(a - c) - (b - c)/(a - c), - S/(a - c) - (b - c)/(a - c), 1]
[1, 1, 1]

2-43

2 Using Symbolic Math Toolbox™ Software

E =
[S, 0, 0]
[0, -S, 0]
[0, 0, a + b + c]

Simplify v:

v = simplify(v)

v =
[-(S + a - b)/(a - c), (S - a + b)/(a - c), 1]
[(S - b + c)/(a - c), -(S + b - c)/(a - c), 1]
[1, 1, 1]

Note that subs does not assign (a^2 - a*b - a*c + b^2 - b*c +
c^2)^(1/2) to S:

S

S =
S

Assign this expression to S:

S = (a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2);

Substitute variables a, b, and c in S with the values 1, 2, and 3:

subs(S, {a, b, c}, {1, 2, 3})

ans =
3^(1/2)

Substitute a, b, and c in v with the same values. Note that you must call subs
twice. The first call, subs(v), replaces S in v with the expression (a^2 - a*b
- a*c + b^2 - b*c + c^2)^(1/2). The second call replaces the variables a,
b, and c in v with the values 1, 2, and 3:

subs(subs(v), {a, b, c}, {1, 2, 3})

ans =
[3^(1/2)/2 - 1/2, - 3^(1/2)/2 - 1/2, 1]
[- 3^(1/2)/2 - 1/2, 3^(1/2)/2 - 1/2, 1]

2-44

Substitute with subs

[1, 1, 1]

These substitutions do not modify a, b, c, S, and v:

[a, b, c]

ans =
[a, b, c]

S

S =
(a^2 - a*b - a*c + b^2 - b*c + c^2)^(1/2)

v

v =
[-(S + a - b)/(a - c), (S - a + b)/(a - c), 1]
[(S - b + c)/(a - c), -(S + b - c)/(a - c), 1]
[1, 1, 1]

To modify the original values S and v, assign the results returned by subs to S
and v. This approach does not modify a, b, and c.

S = subs(S, {a, b, c}, {1, 2, 3})

S =
3^(1/2)

v = subs(subs(v), {a, b, c}, {1, 2, 3})

v =
[3^(1/2)/2 - 1/2, - 3^(1/2)/2 - 1/2, 1]
[- 3^(1/2)/2 - 1/2, 3^(1/2)/2 - 1/2, 1]
[1, 1, 1]

Alternatively, you can assign values to the variables a, b, and c:

a = 1; b = 2; c = 3;

The new values of a, b, and c now exist in the MATLAB workspace:

[a, b, c]

2-45

2 Using Symbolic Math Toolbox™ Software

ans =
1 2 3

Use subs with one input argument to evaluate S and v for these values:

S = subs(S)

S =
3^(1/2)

v = subs(v)

v =
[3^(1/2)/2 - 1/2, - 3^(1/2)/2 - 1/2, 1]
[- 3^(1/2)/2 - 1/2, 3^(1/2)/2 - 1/2, 1]
[1, 1, 1]

2-46

Combine subs and double for Numeric Evaluations

Combine subs and double for Numeric Evaluations
The subs command can be combined with double to evaluate a symbolic
expression numerically. Suppose you have the following expressions

syms t
M = (1 - t^2)*exp(-1/2*t^2);
P = (1 - t^2)*sech(t);

and want to see how M and P differ graphically.

One approach is to type

ezplot(M);
hold on;
ezplot(P);
hold off;

but this plot does not readily help you identify the curves.

2-47

2 Using Symbolic Math Toolbox™ Software

−6 −4 −2 0 2 4 6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

(1−t2) sech(t)

Instead, combine subs, double, and plot:

T = -6:0.05:6;
MT = double(subs(M, t, T));
PT = double(subs(P, t, T));
plot(T, MT, 'b', T, PT, 'r-.');
title(' ');
legend('M','P');
xlabel('t'); grid;

to produce a multicolored graph that indicates the difference between M and P.

2-48

Combine subs and double for Numeric Evaluations

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

M
P

2-49

2 Using Symbolic Math Toolbox™ Software

Variable-Precision Arithmetic

In this section...

“Overview” on page 2-50

“Different Kinds of Arithmetic” on page 2-51

“Accuracy of Numeric Computations” on page 2-54

Overview
There are three different kinds of arithmetic operations in this toolbox.

Numeric MATLAB floating-point arithmetic

Rational MuPAD exact symbolic arithmetic

VPA MuPAD variable-precision arithmetic

For example, the MATLAB statements

format long
1/2 + 1/3

use numeric computation to produce

ans =
0.833333333333333

With Symbolic Math Toolbox software, the statement

sym(1/2) + 1/3

uses symbolic computation to yield

ans =
5/6

And, also with the toolbox, the statements

digits(25)
vpa('1/2 + 1/3')

2-50

Variable-Precision Arithmetic

use variable-precision arithmetic to return

ans =
0.8333333333333333333333333

The floating-point operations used by numeric arithmetic are the fastest of the
three, and require the least computer memory, but the results are not exact.
The number of digits in the printed output of MATLAB double quantities
is controlled by the format statement, but the internal representation is
always the eight-byte floating-point representation provided by the particular
computer hardware.

In the computation of the numeric result above, there are actually three
roundoff errors, one in the division of 1 by 3, one in the addition of 1/2 to
the result of the division, and one in the binary to decimal conversion for
the printed output. On computers that use IEEE® floating-point standard
arithmetic, the resulting internal value is the binary expansion of 5/6,
truncated to 53 bits. This is approximately 16 decimal digits. But, in this
particular case, the printed output shows only 15 digits.

The symbolic operations used by rational arithmetic are potentially the
most expensive of the three, in terms of both computer time and memory.
The results are exact, as long as enough time and memory are available to
complete the computations.

Variable-precision arithmetic falls in between the other two in terms of
both cost and accuracy. A global parameter, set by the function digits,
controls the number of significant decimal digits. Increasing the number of
digits increases the accuracy, but also increases both the time and memory
requirements. The default value of digits is 32, corresponding roughly to
floating-point accuracy.

Different Kinds of Arithmetic

Rational Arithmetic
By default, Symbolic Math Toolbox software uses rational arithmetic
operations, i.e., MuPAD software’s exact symbolic arithmetic. Rational
arithmetic is invoked when you create symbolic variables using the sym
function.

2-51

2 Using Symbolic Math Toolbox™ Software

The sym function converts a double matrix to its symbolic form. For example,
if the double matrix is

format short;
A = [1.1,1.2,1.3;2.1,2.2,2.3;3.1,3.2,3.3]

A =
1.1000 1.2000 1.3000
2.1000 2.2000 2.3000
3.1000 3.2000 3.3000

its symbolic form is:

S = sym(A)

S =
[11/10, 6/5, 13/10]
[21/10, 11/5, 23/10]
[31/10, 16/5, 33/10]

For this matrix A, it is possible to discover that the elements are the ratios of
small integers, so the symbolic representation is formed from those integers.
On the other hand, the statement

E = [exp(1) (1 + sqrt(5))/2; log(3) rand]

returns a matrix

E =
2.7183 1.6180
1.0986 0.6324

whose elements are not the ratios of small integers, so

sym(E)

reproduces the floating-point representation in a symbolic form:

ans =

[3060513257434037/1125899906842624, 910872158600853/562949953421312]

[2473854946935173/2251799813685248, 1423946432832521/2251799813685248]

2-52

Variable-Precision Arithmetic

Variable-Precision Numbers
Variable-precision numbers are distinguished from the exact rational
representation by the presence of a decimal point. A power of 10 scale factor,
denoted by 'e', is allowed. To use variable-precision instead of rational
arithmetic, create your variables using the vpa function.

For matrices with purely double entries, the vpa function generates the
representation that is used with variable-precision arithmetic. For example,
if you apply vpa to the matrix S defined in the preceding section, with
digits(4), by entering

digits(4);
vpa(S)

MATLAB returns the output

ans =
[1.1, 1.2, 1.3]
[2.1, 2.2, 2.3]
[3.1, 3.2, 3.3]

Applying vpa to the matrix E defined in the preceding section, with
digits(25), by entering

digits(25)
F = vpa(E)

returns

F =
[2.718281828459045534884808, 1.618033988749894902525739]
[1.098612288668109560063613, 0.6323592462254095103446616]

Restore the default digits setting:

digits(32);

Conversion to Floating-Point
To convert a rational or variable-precision number to its MATLAB
floating-point representation, use the double function.

2-53

2 Using Symbolic Math Toolbox™ Software

In the example, both double(sym(E)) and double(vpa(E)) return E.

Accuracy of Numeric Computations
The next example is perhaps more interesting. Start with the symbolic
expression

f = sym('exp(pi*sqrt(163))');

The statement

format long;
double(f)

produces the printed floating-point value

ans =
2.625374126407687e+017

Using the second argument of vpa to specify the number of digits,

vpa(f,18)

returns

ans =
262537412640768744.0

and, too,

vpa(f,25)

returns

ans =
262537412640768744.0

You might suspect that f actually has an integer value. However, the 40-digit
value

vpa(f,40)

ans =

2-54

Variable-Precision Arithmetic

262537412640768743.9999999999992500725972

shows that f is very close to, but not exactly equal to, an integer.

2-55

2 Using Symbolic Math Toolbox™ Software

Basic Algebraic Operations
Basic algebraic operations on symbolic objects are the same as operations on
MATLAB objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t.
The statements

syms t
G = [cos(t) sin(t); -sin(t) cos(t)]

create this transformation matrix.

G =
[cos(t), sin(t)]
[-sin(t), cos(t)]

Applying the Givens transformation twice should simply be a rotation through
twice the angle. The corresponding matrix can be computed by multiplying G
by itself or by raising G to the second power. Both

A = G*G

and

A = G^2

produce

A =
[cos(t)^2 - sin(t)^2, 2*cos(t)*sin(t)]
[-2*cos(t)*sin(t), cos(t)^2 - sin(t)^2]

The simplify function

A = simplify(A)

uses a trigonometric identity to return the expected form by trying
several different identities and picking the one that produces the shortest
representation.

A =

2-56

Basic Algebraic Operations

[cos(2*t), sin(2*t)]
[-sin(2*t), cos(2*t)]

The Givens rotation is an orthogonal matrix, so its transpose is its inverse.
Confirming this by

I = G.' *G

which produces

I =
[cos(t)^2 + sin(t)^2, 0]
[0, cos(t)^2 + sin(t)^2]

and then

I = simplify(I)

I =
[1, 0]
[0, 1]

2-57

2 Using Symbolic Math Toolbox™ Software

Linear Algebraic Operations
The following examples show how to do several basic linear algebraic
operations using Symbolic Math Toolbox software.

2-58

Linear Algebraic Operations

The command

H = hilb(3)

generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints

H =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

The computed elements of H are floating-point numbers that are the ratios of
small integers. Indeed, H is a MATLAB array of class double. Converting H
to a symbolic matrix

H = sym(H)

gives

H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

This allows subsequent symbolic operations on H to produce results that
correspond to the infinitely precise Hilbert matrix, sym(hilb(3)), not its
floating-point approximation, hilb(3). Therefore,

inv(H)

produces

ans =
[9, -36, 30]
[-36, 192, -180]
[30, -180, 180]

and

det(H)

yields

2-59

2 Using Symbolic Math Toolbox™ Software

ans =
1/2160

You can use the backslash operator to solve a system of simultaneous linear
equations. For example, the commands

% Solve Hx = b
b = [1; 1; 1];
x = H\b

produce the solution

x =
3

-24
30

All three of these results, the inverse, the determinant, and the solution to
the linear system, are the exact results corresponding to the infinitely precise,
rational, Hilbert matrix. On the other hand, using digits(16), the command

digits(16);
V = vpa(hilb(3))

returns

V =
[1.0, 0.5, 0.3333333333333333]
[0.5, 0.3333333333333333, 0.25]
[0.3333333333333333, 0.25, 0.2]

The decimal points in the representation of the individual elements are the
signal to use variable-precision arithmetic. The result of each arithmetic
operation is rounded to 16 significant decimal digits. When inverting the
matrix, these errors are magnified by the matrix condition number, which for
hilb(3) is about 500. Consequently,

inv(V)

which returns

ans =

2-60

Linear Algebraic Operations

[9.0, -36.0, 30.0]
[-36.0, 192.0, -180.0]
[30.0, -180.0, 180.0]

shows the loss of two digits. So does

1/det(V)

which gives

ans =
2160.000000000018

and

V\b

which is

ans =
3.0

-24.0
30.0

Since H is nonsingular, calculating the null space of H with the command

null(H)

returns an empty matrix:

ans =
[empty sym]

Calculating the column space of H with

colspace(H)

returns a permutation of the identity matrix:

ans =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

2-61

2 Using Symbolic Math Toolbox™ Software

A more interesting example, which the following code shows, is to find a value
s for H(1,1) that makes H singular. The commands

syms s
H(1,1) = s
Z = det(H)
sol = solve(Z)

produce

H =
[s, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Z =
s/240 - 1/270

sol =
8/9

Then

H = subs(H, s, sol)

substitutes the computed value of sol for s in H to give

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Now, the command

det(H)

returns

ans =
0

and

2-62

Linear Algebraic Operations

inv(H)

produces the message

ans =
FAIL

because H is singular. For this matrix, null space and column space are
nontrivial:

Z = null(H)
C = colspace(H)

Z =
3/10
-6/5

1
C =
[1, 0]
[0, 1]
[-3/10, 6/5]

It should be pointed out that even though H is singular, vpa(H) is not. For any
integer value d, setting digits(d), and then computing inv(vpa(H)) results
in an inverse with elements on the order of 10^d.

2-63

2 Using Symbolic Math Toolbox™ Software

Eigenvalues
The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues
and eigenvectors of A are computed, respectively, using the commands E =
eig(A) and [V,E] = eig(A).

The variable-precision counterparts are E = eig(vpa(A)) and [V,E] =
eig(vpa(A)).

The eigenvalues of A are the zeros of the characteristic polynomial of A,
det(A-x*I), which is computed by charpoly(A).

The matrix H from the last section provides the first example:

H = sym([8/9 1/2 1/3; 1/2 1/3 1/4; 1/3 1/4 1/5])

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

The matrix is singular, so one of its eigenvalues must be zero. The statement

[T,E] = eig(H)

produces the matrices T and E. The columns of T are the eigenvectors of H and
the diagonal elements of E are the eigenvalues of H:

T =

[3/10, 218/285 - (4*12589^(1/2))/285, (4*12589^(1/2))/285 + 218/285]

[-6/5, 292/285 - 12589^(1/2)/285, 12589^(1/2)/285 + 292/285]

[1, 1, 1]

E =

[0, 0, 0]

[0, 32/45 - 12589^(1/2)/180, 0]

[0, 0, 12589^(1/2)/180 + 32/45]

It may be easier to understand the structure of the matrices of eigenvectors,
T, and eigenvalues, E, if you convert T and E to decimal notation. To do so,
proceed as follows. The commands

2-64

Eigenvalues

Td = double(T)
Ed = double(E)

return

Td =
0.3000 -0.8098 2.3397

-1.2000 0.6309 1.4182
1.0000 1.0000 1.0000

Ed =
0 0 0
0 0.0878 0
0 0 1.3344

The first eigenvalue is zero. The corresponding eigenvector (the first column
of Td) is the same as the basis for the null space found in the last section. The
other two eigenvalues are the result of applying the quadratic formula to

x x2 64
45

253
2160

− + which is the quadratic factor in factor(charpoly(H, x)):

syms x
g = factor(charpoly(H, x))/x;
solve(g)

ans =
12589^(1/2)/180 + 32/45
32/45 - 12589^(1/2)/180

Closed form symbolic expressions for the eigenvalues are possible only when
the characteristic polynomial can be expressed as a product of rational
polynomials of degree four or less. The Rosser matrix is a classic numerical
analysis test matrix that illustrates this requirement. The statement

R = sym(rosser)

generates

R =
[611, 196, -192, 407, -8, -52, -49, 29]
[196, 899, 113, -192, -71, -43, -8, -44]

2-65

2 Using Symbolic Math Toolbox™ Software

[-192, 113, 899, 196, 61, 49, 8, 52]
[407, -192, 196, 611, 8, 44, 59, -23]
[-8, -71, 61, 8, 411, -599, 208, 208]
[-52, -43, 49, 44, -599, 411, 208, 208]
[-49, -8, 8, 59, 208, 208, 99, -911]
[29, -44, 52, -23, 208, 208, -911, 99]

The commands

p =charpoly(R, x);
pretty(factor(p))

produce

2 2 2

x (x - 1020) (x - 1040500) (x - 1020 x + 100) (x - 1000)

The characteristic polynomial (of degree 8) factors nicely into the product of
two linear terms and three quadratic terms. You can see immediately that
four of the eigenvalues are 0, 1020, and a double root at 1000. The other four
roots are obtained from the remaining quadratics. Use

eig(R)

to find all these values

ans =
0

1000
1000
1020

510 - 100*26^(1/2)
100*26^(1/2) + 510

-10*10405^(1/2)
10*10405^(1/2)

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix
to have a characteristic polynomial that factors into such simple form. If you
change the two “corner” elements of R from 29 to 30 with the commands

S = R; S(1,8) = 30; S(8,1) = 30;

2-66

Eigenvalues

and then try

p = charpoly(S, x)

you find

p =
x^8 - 4040*x^7 + 5079941*x^6 + 82706090*x^5...
- 5327831918568*x^4 + 4287832912719760*x^3...
- 1082699388411166000*x^2 + 51264008540948000*x...
+ 40250968213600000

You also find that factor(p) is p itself. That is, the characteristic polynomial
cannot be factored over the rationals.

For this modified Rosser matrix

F = eig(S)

returns

F =
-1020.053214255892
-0.17053529728769

0.2180398054830161
999.9469178604428
1000.120698293384
1019.524355263202
1019.993550129163
1020.420188201505

Notice that these values are close to the eigenvalues of the original Rosser
matrix. Further, the numerical values of F are a result of MuPAD software’s
floating-point arithmetic. Consequently, different settings of digits do not
alter the number of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but
closed form solutions are rare. The Givens transformation is generated as the
matrix exponential of the elementary matrix

2-67

2 Using Symbolic Math Toolbox™ Software

A =
−
⎡

⎣
⎢

⎤

⎦
⎥

0 1
1 0

.

Symbolic Math Toolbox commands

syms t
A = sym([0 1; -1 0]);
G = expm(t*A)

return

G =
[exp(-t*i)/2 + exp(t*i)/2,

(exp(-t*i)*i)/2 - (exp(t*i)*i)/2]
[- (exp(-t*i)*i)/2 + (exp(t*i)*i)/2,

exp(-t*i)/2 + exp(t*i)/2]

You can simplify this expression using simplify:

G = simplify(G)

G =
[cos(t), sin(t)]
[-sin(t), cos(t)]

Next, the command

g = eig(G)

produces

g =
cos(t) - sin(t)*i
cos(t) + sin(t)*i

You can rewrite g in terms of exponents:

g = rewrite(g, 'exp')

g =
exp(-t*i)
exp(t*i)

2-68

Jordan Canonical Form

Jordan Canonical Form
The Jordan canonical form results from attempts to convert a matrix to its
diagonal form by a similarity transformation. For a given matrix A, find a
nonsingular matrix V, so that inv(V)*A*V, or, more succinctly, J = V\A*V,
is “as close to diagonal as possible.” For almost all matrices, the Jordan
canonical form is the diagonal matrix of eigenvalues and the columns of the
transformation matrix are the eigenvectors. This always happens if the
matrix is symmetric or if it has distinct eigenvalues. Some nonsymmetric
matrices with multiple eigenvalues cannot be converted to diagonal forms.
The Jordan form has the eigenvalues on its diagonal, but some of the
superdiagonal elements are one, instead of zero. The statement

J = jordan(A)

computes the Jordan canonical form of A. The statement

[V,J] = jordan(A)

also computes the similarity transformation. The columns of V are the
generalized eigenvectors of A.

The Jordan form is extremely sensitive to perturbations. Almost any change
in A causes its Jordan form to be diagonal. This makes it very difficult to
compute the Jordan form reliably with floating-point arithmetic. It also
implies that A must be known exactly (i.e., without roundoff error, etc.). Its
elements must be integers, or ratios of small integers. In particular, the
variable-precision calculation, jordan(vpa(A)), is not allowed.

For example, let

A = sym([12,32,66,116;-25,-76,-164,-294;
21,66,143,256;-6,-19,-41,-73])

A =
[12, 32, 66, 116]
[-25, -76, -164, -294]
[21, 66, 143, 256]
[-6, -19, -41, -73]

Then

2-69

2 Using Symbolic Math Toolbox™ Software

[V,J] = jordan(A)

produces

V =
[4, -2, 4, 3]
[-6, 8, -11, -8]
[4, -7, 10, 7]
[-1, 2, -3, -2]

J =
[1, 1, 0, 0]
[0, 1, 0, 0]
[0, 0, 2, 1]
[0, 0, 0, 2]

Therefore A has a double eigenvalue at 1, with a single Jordan block, and a
double eigenvalue at 2, also with a single Jordan block. The matrix has only
two eigenvectors, V(:,1) and V(:,3). They satisfy

A*V(:,1) = 1*V(:,1)
A*V(:,3) = 2*V(:,3)

The other two columns of V are generalized eigenvectors of grade 2. They
satisfy

A*V(:,2) = 1*V(:,2) + V(:,1)
A*V(:,4) = 2*V(:,4) + V(:,3)

In mathematical notation, with vj = v(:,j), the columns of V and eigenvalues
satisfy the relationships

()A I v v− =1 2 1

() .A I v v− =2 4 3

2-70

Singular Value Decomposition

Singular Value Decomposition
Singular value decomposition expresses an m-by-n matrix A as A = U*S*V'.
Here, S is an m-by-n diagonal matrix with singular values of A on its
diagonal. The columns of the m-by-m matrix U are the left singular vectors for
corresponding singular values. The columns of the n-by-n matrix V are the
right singular vectors for corresponding singular values. V' is the Hermitian
transpose (the complex conjugate of the transpose) of V.

To compute the singular value decomposition of a matrix, use svd. This
function lets you compute singular values of a matrix separately or both
singular values and singular vectors in one function call. To compute singular
values only, use svd without output arguments

svd(A)

or with one output argument

S = svd(A)

To compute singular values and singular vectors of a matrix, use three output
arguments:

[U,S,V] = svd(A)

svd returns two unitary matrices, U and V, the columns of which are singular
vectors. It also returns a diagonal matrix, S, containing singular values on its
diagonal. The elements of all three matrices are floating-point numbers. The
accuracy of computations is determined by the current setting of digits.

Create the n-by-n matrix A with elements defined by A(i,j) = 1/(i - j +
1/2). The most obvious way of generating this matrix is

n = 3;
for i=1:n

for j=1:n
A(i,j) = sym(1/(i-j+1/2));

end
end

For n = 3, the matrix is

2-71

2 Using Symbolic Math Toolbox™ Software

A

A =
[2, -2, -2/3]
[2/3, 2, -2]
[2/5, 2/3, 2]

Compute the singular values of this matrix. If you use svd directly, it will
return exact symbolic result. For this matrix, the result is very long. If you
prefer a shorter numeric result, convert the elements of A to floating-point
numbers using vpa. Then use svd to compute singular values of this matrix
using variable-precision arithmetic:

S = svd(vpa(A))

S =
3.1387302525015353960741348953506
3.0107425975027462353291981598225
1.6053456783345441725883965978052

Now, compute the singular values and singular vectors of A:

[U,S,V] = svd(A)

U =

[0.53254331027335338470683368360204, 0.76576895948802052989304092179952, 0.360548919520962147911898877283

[-0.82525689650849463222502853672224, 0.37514965283965451993171338605042, 0.422153754856514895224880319173

[0.18801243961043281839917114171742, -0.52236064041897439447429784257224, 0.831739552920751921784218743314

S =

[3.1387302525015353960741348953506, 0, 0]

[0, 3.0107425975027462353291981598225, 0]

[0, 0, 1.6053456783345441725883965978052]

V =

[0.18801243961043281839917114171742, 0.52236064041897439447429784257224, 0.831739552920751921784218743314

[-0.82525689650849463222502853672224, -0.37514965283965451993171338605042, 0.422153754856514895224880319173

[0.53254331027335338470683368360204, -0.76576895948802052989304092179952,

0.36054891952096214791189887728353]

2-72

Eigenvalue Trajectories

Eigenvalue Trajectories
This example applies several numeric, symbolic, and graphic techniques to
study the behavior of matrix eigenvalues as a parameter in the matrix is
varied. This particular setting involves numerical analysis and perturbation
theory, but the techniques illustrated are more widely applicable.

In this example, you consider a 3-by-3 matrix A whose eigenvalues are 1, 2, 3.

First, you perturb A by another matrix E and parameter t A A tE: → + . As

t increases from 0 to 10-6, the eigenvalues 1 1= , 2 2= , 3 3= change to

1 1 5596 0 2726′ = +. . i , 2 1 5596 0 2726′ = −. . i , 3 2 8808′ = . .

0 0.5 1 1.5 2 2.5 3 3.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

λ(1) λ(2) λ(3)

λ’(1)

λ’(2)

λ’(3)

This, in turn, means that for some value of t = < < −τ τ, 0 10 6 , the perturbed

matrix A(t) = A + tE has a double eigenvalue 1 2= . The example shows how
to find the value of t, called τ, where this happens.

2-73

2 Using Symbolic Math Toolbox™ Software

The starting point is a MATLAB test example, known as gallery(3).

A = gallery(3)

A =
-149 -50 -154
537 180 546
-27 -9 -25

This is an example of a matrix whose eigenvalues are sensitive to the
effects of roundoff errors introduced during their computation. The actual
computed eigenvalues may vary from one machine to another, but on a typical
workstation, the statements

format long
e = eig(A)

produce

e =
1.000000000010722
1.999999999991790
2.999999999997399

Of course, the example was created so that its eigenvalues are actually 1, 2,
and 3. Note that three or four digits have been lost to roundoff. This can be
easily verified with the toolbox. The statements

B = sym(A);
e = eig(B)'
p = charpoly(B, x)
f = factor(p)

produce

e =
[1, 2, 3]

p =
x^3 - 6*x^2 + 11*x - 6

f =

2-74

Eigenvalue Trajectories

(x - 3)*(x - 1)*(x - 2)

Are the eigenvalues sensitive to the perturbations caused by roundoff error
because they are “close together”? Ordinarily, the values 1, 2, and 3 would
be regarded as “well separated.” But, in this case, the separation should be
viewed on the scale of the original matrix. If A were replaced by A/1000,
the eigenvalues, which would be .001, .002, .003, would “seem” to be closer
together.

But eigenvalue sensitivity is more subtle than just “closeness.” With a
carefully chosen perturbation of the matrix, it is possible to make two of its
eigenvalues coalesce into an actual double root that is extremely sensitive
to roundoff and other errors.

One good perturbation direction can be obtained from the outer product of the
left and right eigenvectors associated with the most sensitive eigenvalue. The
following statement creates the perturbation matrix:

E = [130,-390,0;43,-129,0;133,-399,0]

E =
130 -390 0
43 -129 0

133 -399 0

The perturbation can now be expressed in terms of a single, scalar parameter
t. The statements

syms x t
A = A + t*E

replace A with the symbolic representation of its perturbation:

A =
[130*t - 149, - 390*t - 50, -154]
[43*t + 537, 180 - 129*t, 546]
[133*t - 27, - 399*t - 9, -25]

Computing the characteristic polynomial of this new A

p = charpoly(A, x)

2-75

2 Using Symbolic Math Toolbox™ Software

gives

p =
x^3 + (- t - 6)*x^2 + (492512*t + 11)*x - 1221271*t - 6

p is a cubic in x whose coefficients vary linearly with t.

It turns out that when t is varied over a very small interval, from 0 to 1.0e–6,
the desired double root appears. This can best be seen graphically. The first
figure shows plots of p, considered as a function of x, for three different values
of t: t = 0, t = 0.5e–6, and t = 1.0e–6. For each value, the eigenvalues are
computed numerically and also plotted:

x = .8:.01:3.2;
for k = 0:2

c = sym2poly(subs(p,t,k*0.5e-6));
y = polyval(c,x);
lambda = eig(double(subs(A,t,k*0.5e-6)));
subplot(3,1,3-k)
plot(x,y,'-',x,0*x,':',lambda,0*lambda,'o')
axis([.8 3.2 -.5 .5])
text(2.25,.35,['t = ' num2str(k*0.5e-6)]);

end

2-76

Eigenvalue Trajectories

1 1.5 2 2.5 3
−0.5

0

0.5
t = 0

1 1.5 2 2.5 3
−0.5

0

0.5
t = 5e−007

1 1.5 2 2.5 3
−0.5

0

0.5
t = 1e−006

The bottom subplot shows the unperturbed polynomial, with its three roots at
1, 2, and 3. The middle subplot shows the first two roots approaching each
other. In the top subplot, these two roots have become complex and only
one real root remains.

The next statements compute and display the actual eigenvalues

e = eig(A);
ee = subexpr(e);

sigma =
(1221271*t)/2 + (t + 6)^3/27 - ((492512*t + 11)*(t + 6))/6 +...
(((492512*t)/3 - (t + 6)^2/9 + 11/3)^3 + ((1221271*t)/2 +...
(t + 6)^3/27 - ((492512*t + 11)*(t + 6))/6 + 3)^2)^(1/2) + 3

pretty(ee)

showing that e(2) and e(3) form a complex conjugate pair:

2-77

2 Using Symbolic Math Toolbox™ Software

+- -+
| t 1/3 |
| - + sigma - #3 + 2 |
| 3 |
| |
| 1/3 |
| t sigma |
| - - -------- + #1 + 2 - #2 |
| 3 2 |
| |
| 1/3 |
| t sigma |
| - - -------- + #1 + 2 + #2 |
| 3 2 |
+- -+

where

2
492512 t (t + 6)
-------- - -------- + 11/3

3 9
#1 == --------------------------

1/3
2 sigma

1/2 1/3
3 (sigma + #3) i

#2 == ----------------------
2

2
492512 t (t + 6)
-------- - -------- + 11/3

3 9
#3 == --------------------------

1/3
sigma

2-78

Eigenvalue Trajectories

Next, the symbolic representations of the three eigenvalues are evaluated at
many values of t

tvals = (2:-.02:0)' * 1.e-6;
r = size(tvals,1);
c = size(e,1);
lambda = zeros(r,c);
for k = 1:c

lambda(:,k) = double(subs(e(k),t,tvals));
end
plot(lambda,tvals)
xlabel('\lambda'); ylabel('t');
title('Eigenvalue Transition')

to produce a plot of their trajectories.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

λ

t

Eigenvalue Transition

2-79

2 Using Symbolic Math Toolbox™ Software

Above t = 0.8e-6, the graphs of two of the eigenvalues intersect, while below
t = 0.8e–6, two real roots become a complex conjugate pair. What is the precise
value of t that marks this transition? Let τ denote this value of t.

One way to find the exact value of τ involves polynomial discriminants. The
discriminant of a quadratic polynomial is the familiar quantity under the
square root sign in the quadratic formula. When it is negative, the two roots
are complex.

There is no discrim function in the toolbox, but there is the polylib::discrim
function in the MuPAD language.

Use these commands

syms a b c x
evalin(symengine,'polylib::discrim(a*x^2+b*x+c, x)')

to show the generic quadratic’s discriminant, b2 - 4ac:

ans =
b^2 - 4*a*c

The discriminant for the perturbed cubic characteristic polynomial is
obtained, using

discrim = feval(symengine,'polylib::discrim',p,x)

which produces

discrim =
242563185060*t^4 - 477857003880091920*t^3 +...
1403772863224*t^2 - 5910096*t + 4

The quantity τ is one of the four roots of this quartic. You can find a numeric
value for τ with the following code.

s = solve(discrim);
tau = vpa(s)

2-80

Eigenvalue Trajectories

tau =

1970031.04061804553618913725474883634597991201389

0.000000783792490596794010485879469854518820556090553664

0.00000107692481604921513807537160160597784208236311263 - 0.00000308544636502289065492747*i

0.00000308544636502289065492746538275636180217710757295*i + 0.00000107692481604921513807537160160597784249167873707

Of the four solutions, you know that

tau = tau(2)

is the transition point

tau =
0.00000078379249059679401048084

because it is closest to the previous estimate.

A more generally applicable method for finding τ is based on the fact that, at a
double root, both the function and its derivative must vanish. This results in
two polynomial equations to be solved for two unknowns. The statement

sol = solve(p,diff(p,'x'))

solves the pair of algebraic equations p = 0 and dp/dx = 0 and produces

sol =
t: [4x1 sym]
x: [4x1 sym]

Find τ now by

format short
tau = double(sol.t(2))

which reveals that the second element of sol.t is the desired value of τ:

tau =
7.8379e-007

Therefore, the second element of sol.x

2-81

2 Using Symbolic Math Toolbox™ Software

sigma = double(sol.x(2))

is the double eigenvalue

sigma =
1.5476

To verify that this value of τ does indeed produce a double eigenvalue at

 = 1 5476. , substitute τ for t in the perturbed matrix A(t) = A + tE and find
the eigenvalues of A(t). That is,

e = eig(double(subs(A, t, tau)))

e =
1.5476
1.5476
2.9048

confirms that = 1 5476. is a double eigenvalue of A(t) for t = 7.8379e–07.

2-82

Solve an Algebraic Equation

Solve an Algebraic Equation
If S is a symbolic expression,

solve(S)

attempts to find values of the symbolic variable in S (as determined by
symvar) for which S is zero. For example,

syms a b c x
S = a*x^2 + b*x + c;
solve(S)

uses the familiar quadratic formula to produce

ans =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

This is a symbolic vector whose elements are the two solutions.

If you want to solve for a specific variable, you must specify that variable
as an additional argument. For example, if you want to solve S for b, use
the command

b = solve(S, b)

b =
-(a*x^2 + c)/x

Note that these examples assume equations of the form f(x) = 0. To solve
equations of the form f(x) = q(x), use the operator ==. For example, this
command

syms x
s = solve(cos(2*x) + sin(x) == 1)

returns a vector with three solutions.

s =
0

pi/6

2-83

2 Using Symbolic Math Toolbox™ Software

(5*pi)/6

There are also solutions at each of these results plus kπ for integer k, as you
can see in the MuPAD solution:

2-84

Solve a System of Algebraic Equations

Solve a System of Algebraic Equations
This section explains how to solve systems of equations using Symbolic Math
Toolbox software. As an example, suppose you have the system

x y

x
y

2 2 0

2

=

− = ,

and you want to solve for x and y. First, create the necessary symbolic objects.

syms x y alpha

There are several ways to address the output of solve. One is to use a
two-output call

[sol_x,sol_y] = solve(x^2*y^2 == 0, x-y/2 == alpha)

which returns

sol_x =
alpha

0

sol_y =
0

-2*alpha

Modify the first equation to x2y2 = 1. The new system has more solutions.

[sol_x,sol_y] = solve(x^2*y^2 == 1, x-y/2 == alpha)

produces four distinct solutions:

sol_x =
alpha/2 + (alpha^2 + 2)^(1/2)/2
alpha/2 + (alpha^2 - 2)^(1/2)/2
alpha/2 - (alpha^2 + 2)^(1/2)/2
alpha/2 - (alpha^2 - 2)^(1/2)/2

sol_y =

2-85

2 Using Symbolic Math Toolbox™ Software

(alpha^2 + 2)^(1/2) - alpha
(alpha^2 - 2)^(1/2) - alpha

- alpha - (alpha^2 + 2)^(1/2)
- alpha - (alpha^2 - 2)^(1/2)

Since you did not specify the dependent variables, solve uses symvar to
determine the variables.

This way of assigning output from solve is quite successful for “small”
systems. Plainly, if you had, say, a 10-by-10 system of equations, typing

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)

is both awkward and time consuming. To circumvent this difficulty, solve
can return a structure whose fields are the solutions. For example, solve the
system of equations u^2 - v^2 = a^2, u + v = 1, a^2 - 2*a = 3:

syms u v a
S = solve(u^2 - v^2 == a^2, u + v == 1, a^2 - 2*a == 3)

The solver returns its results enclosed in this structure:

S =
a: [2x1 sym]
u: [2x1 sym]
v: [2x1 sym]

The solutions for a reside in the “a-field” of S. That is,

S.a

produces

ans =
-1
3

Similar comments apply to the solutions for u and v. The structure S can
now be manipulated by field and index to access a particular portion of the
solution. For example, if you want to examine the second solution, you can
use the following statement

2-86

Solve a System of Algebraic Equations

s2 = [S.a(2), S.u(2), S.v(2)]

to extract the second component of each field.

s2 =
[3, 5, -4]

The following statement

M = [S.a, S.u, S.v]

creates the solution matrix M

M =
[-1, 1, 0]
[3, 5, -4]

whose rows comprise the distinct solutions of the system.

Linear systems of equations can also be solved using matrix division. For
example, solve this system:

clear u v x y
syms u v x y
S = solve(x + 2*y == u, 4*x + 5*y == v);
sol = [S.x; S.y]

A = [1 2; 4 5];
b = [u; v];
z = A\b

sol =
(2*v)/3 - (5*u)/3

(4*u)/3 - v/3

z =
(2*v)/3 - (5*u)/3

(4*u)/3 - v/3

Thus sol and z produce the same solution, although the results are assigned
to different variables.

2-87

2 Using Symbolic Math Toolbox™ Software

Solve a Single Differential Equation
Use dsolve to compute symbolic solutions to ordinary differential equations.
You can specify the equations as symbolic expressions containing diff or as
strings with the letter D to indicate differentiation.

Note Because D indicates differentiation, the names of symbolic variables
must not contain D.

Before using dsolve, create the symbolic function for which you want to
solve an ordinary differential equation. Use sym or syms to create a symbolic
function. For example, create a function y(x):

syms y(x)

For details, see “Create Symbolic Functions” on page 1-10.

To specify initial or boundary conditions, use additional equations. If you
do not specify initial or boundary conditions, the solutions will contain
integration constants, such as C1, C2, and so on.

The output from dsolve parallels the output from solve. That is, you can:

• Call dsolve with the number of output variables equal to the number of
dependent variables.

• Place the output in a structure whose fields contain the solutions of the
differential equations.

First-Order Linear ODE
Suppose you want to solve the equation y'(t) = t*y. First, create the
symbolic function y(t):

syms y(t)

Now use dsolve to solve the equation:

y(t) = dsolve(diff(y) == t*y)

2-88

Solve a Single Differential Equation

y(t) =
C2*exp(t^2/2)

y(t) = C2*exp(t^2/2) is a solution to the equation for any constant C2.

Solve the same ordinary differential equation, but now specify the initial
condition y(0) = 2:

syms y(t)
y(t) = dsolve(diff(y) == t*y, y(0) == 2)

y(t) =
2*exp(t^2/2)

Nonlinear ODE
Nonlinear equations can have multiple solutions, even if you specify initial
conditions. For example, solve this equation:

syms x(t)
x(t) = dsolve((diff(x) + x)^2 == 1, x(0) == 0)

results in

x(t) =
exp(-t) - 1
1 - exp(-t)

Second-Order ODE with Initial Conditions
Solve this second-order differential equation with two initial conditions. One
initial condition is a derivative y'(x) at x = 0. To be able to specify this
initial condition, create an additional symbolic function Dy = diff(y). (You
also can use any valid function name instead of Dy.) Then Dy(0) = 0 specifies
that Dy = 0 at x = 0.

syms y(x)
Dy = diff(y);
y(x) = dsolve(diff(y, 2) == cos(2*x) - y, y(0) == 1, Dy(0) == 0);
y(x) = simplify(y)

y(x) =
1 - (8*sin(x/2)^4)/3

2-89

2 Using Symbolic Math Toolbox™ Software

Third-Order ODE
Solve this third-order ordinary differential equation:

d u

dx
u

3

3
=

u u u() , () , () ,0 1 0 1 0= ′ = − ′′ =

Because the initial conditions contain the first- and the second-order
derivatives, create two additional symbolic functions, Dy and D2y to specify
these initial conditions:

syms u(x)
Du = diff(u);
D2u = diff(u, 2);
u(x) = dsolve(diff(u, 3) == u, u(0) == 1, Du(0)
== -1, D2u(0) == pi)

u(x) =

(pi*exp(x))/3 - exp(-x/2)*cos((3^(1/2)*x)/2)*(pi/3 - 1) -...
(3^(1/2)*exp(-x/2)*sin((3^(1/2)*x)/2)*(pi + 1))/3

More ODE Examples
This table shows examples of differential equations and their Symbolic Math
Toolbox syntax. The last example is the Airy differential equation, whose
solution is called the Airy function.

2-90

Solve a Single Differential Equation

Differential Equation MATLAB Command

dy
dt

y t e t+ = −4 ()

y(0) = 1

syms y(t)
dsolve(diff(y) + 4*y == exp(-t),
y(0) == 1)

2x2y′′ + 3xy′ – y = 0
(′ = d/dx)

syms y(x)
dsolve(2*x^2*diff(y, 2) +
3*x*diff(y) - y == 0)

d y

dx
xy x

2

2
= ()

y y K() , () ()/0 0 3
1

2 31 3= =

(The Airy equation)

syms y(x)
dsolve(diff(y, 2) == x*y, y(0) == 0,
y(3) == besselk(1/3, 2*sqrt(3))/pi)

2-91

2 Using Symbolic Math Toolbox™ Software

Solve a System of Differential Equations
dsolve can handle several ordinary differential equations in several variables,
with or without initial conditions. For example, solve these linear first-order
equations. First, create the symbolic functions f(t) and g(t):

syms f(t) g(t)

Now use dsolve to solve the system. The toolbox returns the computed
solutions as elements of the structure S:

S = dsolve(diff(f) == 3*f + 4*g, diff(g) == -4*f + 3*g)

S =
g: [1x1 sym]
f: [1x1 sym]

To return the values of f(t) and g(t), enter these commands:

f(t) = S.f
g(t) = S.g

f(t) =
C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)

g(t) =
C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

If you prefer to recover f(t) and g(t) directly, as well as include initial
conditions, enter these commands:

syms f(t) g(t)
[f(t), g(t)] = dsolve(diff(f) == 3*f + 4*g,...
diff(g) == -4*f + 3*g, f(0) == 0, g(0) == 1)

f(t) =
sin(4*t)*exp(3*t)

g(t) =
cos(4*t)*exp(3*t)

2-92

Solve a System of Differential Equations

Suppose you want to solve a system of differential equations in a matrix form.
For example, solve the system Y′ = AY + B, where A, B, and Y represent the
following matrices:

syms x(t) y(t)
A = [1 2; -1 1];
B = [1; t];
Y = [x; y];

Solve the system using dsolve:

S = dsolve(diff(Y) == A*Y + B);
x = S.x
y = S.y

x =
2^(1/2)*exp(t)*cos(2^(1/2)*t)*(C2 + (exp(-t)*(4*sin(2^(1/2)*t) +...
2^(1/2)*cos(2^(1/2)*t) + 6*t*sin(2^(1/2)*t) +...
6*2^(1/2)*t*cos(2^(1/2)*t)))/18) +...
2^(1/2)*exp(t)*sin(2^(1/2)*t)*(C1 - (exp(-t)*(4*cos(2^(1/2)*t) -...
2^(1/2)*sin(2^(1/2)*t) +...
6*t*cos(2^(1/2)*t) - 6*2^(1/2)*t*sin(2^(1/2)*t)))/18)

y =
exp(t)*cos(2^(1/2)*t)*(C1 - (exp(-t)*(4*cos(2^(1/2)*t) -...
2^(1/2)*sin(2^(1/2)*t) + 6*t*cos(2^(1/2)*t) -...
6*2^(1/2)*t*sin(2^(1/2)*t)))/18) - exp(t)*sin(2^(1/2)*t)*(C2 +...
(exp(-t)*(4*sin(2^(1/2)*t) + 2^(1/2)*cos(2^(1/2)*t) +...
6*t*sin(2^(1/2)*t) + 6*2^(1/2)*t*cos(2^(1/2)*t)))/18)

2-93

2 Using Symbolic Math Toolbox™ Software

Compute Fourier and Inverse Fourier Transforms
The Fourier transform of a function f(x) is defined as

F f w f x e dxiwx[] = −

−∞

∞

∫() () ,

and the inverse Fourier transform (IFT) as

F f x f w e dwiwx−

−∞

∞
[] = ∫1 1

2
() () .

This documentation refers to this formulation as the Fourier transform of f
with respect to x as a function of w. Or, more concisely, the Fourier transform
of f with respect to x at w. Mathematicians often use the notation F[f] to
indicate the Fourier transform of f. In this setting, the transform is taken with
respect to the independent variable of f (if f = f(t), then t is the independent
variable; f = f(x) implies that x is the independent variable, etc.) at the default
variable w. This documentation refers to F[f] as the Fourier transform of f at
w and F–1[f] is the IFT of f at x. See fourier and ifourier in the reference
pages for tables that show the Symbolic Math Toolbox commands equivalent
to various mathematical representations of the Fourier and inverse Fourier
transforms.

For example, consider the Fourier transform of the Cauchy density function,
(π(1 + x2))–1:

syms x
cauchy = 1/(pi*(1+x^2));
fcauchy = fourier(cauchy)

fcauchy =
(pi*exp(-w)*heaviside(w) + pi*heaviside(-w)*exp(w))/pi

fcauchy = expand(fcauchy)

fcauchy =
exp(-w)*heaviside(w) + heaviside(-w)*exp(w)

2-94

Compute Fourier and Inverse Fourier Transforms

ezplot(fcauchy)

The Fourier transform is symmetric, since the original Cauchy density
function is symmetric.

To recover the Cauchy density function from the Fourier transform, call
ifourier:

finvfcauchy = ifourier(fcauchy)

finvfcauchy =
-(1/(x*i - 1) - 1/(x*i + 1))/(2*pi)

simplify(finvfcauchy)

ans =
1/(pi*(x^2 + 1))

An application of the Fourier transform is the solution of ordinary and partial
differential equations over the real line. Consider the deformation of an

2-95

2 Using Symbolic Math Toolbox™ Software

infinitely long beam resting on an elastic foundation with a shock applied to
it at a point. A “real world” analogy to this phenomenon is a set of railroad
tracks atop a road bed.

The shock could be induced by a pneumatic hammer blow.

The differential equation idealizing this physical setting is

d y

dx

k
EI

y
EI

x x
4

4
1+ = − ∞ < < ∞δ(), .

Here, E represents elasticity of the beam (railroad track), I is the “beam
constant,” and k is the spring (road bed) stiffness. The shock force on the right
side of the differential equation is modeled by the Dirac Delta function δ(x).
The Dirac Delta function has the following important property:

f x y y dy f x() () ().− =
−∞

∞

∫ δ

A definition of the Dirac Delta function is

 () lim (),(/ , /)x n x
n

n n=
→∞

−1 2 1 2

2-96

Compute Fourier and Inverse Fourier Transforms

where

(/ , /) ()− =
− < <⎧

⎨
⎪

⎩⎪
1 2 1 2

1
1

2
1

2
0

n n x n
x

n
for

otherwise.

Let Y(w) = F[y(x)](w) and Δ(w) = F[δ(x)](w). Indeed, try the command
fourier(dirac(x), x, w). The Fourier transform turns differentiation into
exponentiation, and, in particular,

F
d y

dx
w w Y w

4

4
4⎡

⎣
⎢

⎤

⎦
⎥ =() ().

To see a demonstration of this property, try this

syms w y(x)
fourier(diff(y(x), x, 4), x, w)

which returns

ans =
w^4*fourier(y(x), x, w)

Note that you can call the fourier command with one, two, or three inputs
(see the reference pages for fourier). With a single input argument,
fourier(f) returns a function of the default variable w. If the input argument
is a function of w, fourier(f) returns a function of t. All inputs to fourier
must be symbolic objects.

Applying the Fourier transform to the differential equation above yields the
algebraic equation

w
k

EI
Y w w4 +⎛

⎝⎜
⎞
⎠⎟

=() (),Δ

or

Y(w) = Δ(w)G(w),

2-97

2 Using Symbolic Math Toolbox™ Software

where

G w
w

k
EI

F g x w() () ()=
+

= []1
4

for some function g(x). That is, g is the inverse Fourier transform of G:

g(x) = F–1[G(w)](x)

The Symbolic Math Toolbox counterpart to the IFT is ifourier. This behavior
of ifourier parallels fourier with one, two, or three input arguments (see
the reference pages for ifourier).

Continuing with the solution of the differential equation, observe that the
ratio

K
EI

is a relatively “large” number since the road bed has a high stiffness constant
k and a railroad track has a low elasticity E and beam constant I. Make the
simplifying assumption that

K
EI

= 1024.

This is done to ease the computation of F –1[G(w)](x). Now type

G = 1/(w^4 + 1024);
g = ifourier(G, w, x);
g = simplify(g);
pretty(g)

and see

/ 1/2 / / pi \
| 2 exp(-4 x) | sin| -- + 4 x | heaviside(x) -
\ \ \ 4 /

2-98

Compute Fourier and Inverse Fourier Transforms

/ pi \ \ \
cos| -- + 4 x | exp(8 x) (heaviside(x) - 1) | | / 512

\ 4 / / /

Notice that g contains the Heaviside distribution

H x
x
x
x

()
.

=
>
<
=

⎧
⎨
⎪

⎩⎪

1 0
0 0

0

for
for

1/2 for

Since Y is the product of Fourier transforms, y is the convolution of the
transformed functions. That is, F[y] = Y(w) = Δ(w) G(w) = F[δ] F[g] implies

y x g x g x y y dy g x() ()() () () ().= ∗ = − =
−∞

∞

∫

by the special property of the Dirac Delta function. To plot this function,
substitute the domain of x into y(x), using the subs command.

XX = -3:0.05:3;
YY = double(subs(g, x, XX));
plot(XX, YY)
title('Beam Deflection for a Point Shock')
xlabel('x'); ylabel('y(x)');

The resulting graph

2-99

2 Using Symbolic Math Toolbox™ Software

shows that the impact of a blow on a beam is highly localized; the greatest
deflection occurs at the point of impact and falls off sharply from there.

2-100

Compute Laplace and Inverse Laplace Transforms

Compute Laplace and Inverse Laplace Transforms
The Laplace transform of a function f(t) is defined as

L f s f t e dtts[]() = −
∞

∫ () ,
0

while the inverse Laplace transform (ILT) of f(s) is

L f t
i

f s e dsst

c i

c i
−

− ∞

+ ∞
[] = ∫1 1

2
() () ,

where c is a real number selected so that all singularities of f(s) are to the left
of the line s = c. The notation L[f] indicates the Laplace transform of f at s.
Similarly, L–1[f] is the ILT of f at t.

The Laplace transform has many applications including the solution
of ordinary differential equations/initial value problems. Consider the
resistance-inductor-capacitor (RLC) circuit below.

2-101

2 Using Symbolic Math Toolbox™ Software

Let Rj and Ij, j = 1, 2, 3 be resistances (measured in ohms) and currents
(amperes), respectively; L be inductance (henrys), and C be capacitance
(farads); E(t) be the electromotive force, and Q(t) be the charge.

By applying Kirchhoff’s voltage and current laws, Ohm’s Law, and Faraday’s
Law, you can arrive at the following system of simultaneous ordinary
differential equations.

dI
dt

R
L

dQ
dt

R R
L

I I I1 2 1 2
1 1 00+ = − =, () .

dQ
dt R R

E t
C

Q t
R

R R
I Q Q=

+
−⎛

⎝⎜
⎞
⎠⎟
+

+
=1 1

0
3 2

2

3 2
1 0() () , () .

Solve this system of differential equations using laplace. First treat the Rj,
L, and C as (unknown) real constants and then supply values later on in
the computation.

2-102

Compute Laplace and Inverse Laplace Transforms

syms R1 R2 R3 L C real;
syms I1(t) Q(t) s;
dI1(t) = diff(I1(t), t);
dQ(t) = diff(Q(t),t);
E(t) = sin(t); % Voltage
eq1(t) = dI1(t) + R2*dQ(t)/L - (R2 - R1)*I1(t)/L;
eq2(t) = dQ(t) - (E(t) - Q/C)/(R2 + R3) - R2*I1(t)/(R2 + R3);

At this point, you have constructed the equations in the MATLAB workspace.
An approach to solving the differential equations is to apply the Laplace
transform, which you will apply to eq1(t) and eq2(t). Transforming eq1(t)
and eq2(t)

L1(t) = laplace(eq1,t,s)
L2(t) = laplace(eq2,t,s)

returns

L1(t) =
s*laplace(I1(t), t, s) - I1(0)
+ ((R1 - R2)*laplace(I1(t), t, s))/L
- (R2*(Q(0) - s*laplace(Q(t), t, s)))/L

L2(t) =
s*laplace(Q(t), t, s) - Q(0)
- (R2*laplace(I1(t), t, s))/(R2 + R3) - (C/(s^2 + 1)
- laplace(Q(t), t, s))/(C*(R2 + R3))

Now you need to solve the system of equations L1 = 0, L2 = 0 for
laplace(I1(t),t,s) and laplace(Q(t),t,s), the Laplace transforms of
I1 and Q, respectively. To do this, make a series of substitutions. For the
purposes of this example, use the quantities R1 = 4 Ω (ohms), R2 = 2 Ω,
R3 = 3 Ω, C = 1/4 farads, L = 1.6 H (henrys), I1(0) = 15 A (amperes), and Q(0)
= 2 A/sec. Substituting these values in L1

syms LI1 LQ
NI1 = subs(L1(t),{R1,R2,R3,L,C,I1(0),Q(0)}, ...

{4,2,3,1.6,1/4,15,2})

returns

NI1 =

2-103

2 Using Symbolic Math Toolbox™ Software

s*laplace(I1(t), t, s) + (5*s*laplace(Q(t), t, s))/4
+ (5*laplace(I1(t), t, s))/4 - 35/2

The substitution

NQ = subs(L2,{R1,R2,R3,L,C,I1(0),Q(0)},{4,2,3,1.6,1/4,15,2})

returns

NQ(t) =
s*laplace(Q(t), t, s) - 1/(5*(s^2 + 1)) -...
(2*laplace(I1(t), t, s))/5 + (4*laplace(Q(t), t, s))/5 - 2

To solve for laplace(I1(t),t,s) and laplace(Q(t),t,s), make a final
pair of substitutions. First, replace the strings laplace(I1(t),t,s) and
laplace(Q(t),t,s) by the sym objects LI1 and LQ, using

NI1 =...
subs(NI1,{laplace(I1(t),t,s),laplace(Q(t),t,s)},{LI1,LQ})

to obtain

NI1 =
(5*LI1)/4 + LI1*s + (5*LQ*s)/4 - 35/2

Collecting terms

NI1 = collect(NI1,LI1)

gives

NI1 =
(s + 5/4)*LI1 + (5*LQ*s)/4 - 35/2

A similar string substitution

NQ = ...
subs(NQ,{laplace(I1(t),t,s), laplace(Q(t),t,s)}, {LI1,LQ})

yields

NQ(t) =
(4*LQ)/5 - (2*LI1)/5 + LQ*s - 1/(5*(s^2 + 1)) - 2

2-104

Compute Laplace and Inverse Laplace Transforms

which, after collecting terms,

NQ = collect(NQ,LQ)

gives

NQ(t) =
(s + 4/5)*LQ - (2*LI1)/5 - 1/(5*(s^2 + 1)) - 2

Now, solving for LI1 and LQ

[LI1, LQ] = solve(NI1, NQ, LI1, LQ)

you obtain

LI1 =

(5*(60*s^3 + 56*s^2 + 59*s + 56))/((s^2 + 1)*(20*s^2 + 51*s + 20))

LQ =

(40*s^3 + 190*s^2 + 44*s + 195)/((s^2 + 1)*(20*s^2 + 51*s + 20))

To recover I1 and Q, compute the inverse Laplace transform of LI1 and LQ.
Inverting LI1

I1 = ilaplace(LI1, s, t)

produces

I1 =
15*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) -...
(293*1001^(1/2)*sinh((1001^(1/2)*t)/40))/21879) - (5*sin(t))/51

Inverting LQ

Q = ilaplace(LQ, s, t)

yields

Q =
(4*sin(t))/51 - (5*cos(t))/51 +...
(107*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) +...
(2039*1001^(1/2)*sinh((1001^(1/2)*t)/40))/15301))/51

2-105

2 Using Symbolic Math Toolbox™ Software

Now plot the current I1(t) and charge Q(t) in two different time domains, 0
≤ t ≤ 10 and 5 ≤ t ≤ 25. The statements

subplot(2,2,1); ezplot(I1,[0,10]);
title('Current'); ylabel('I1(t)'); grid
subplot(2,2,2); ezplot(Q,[0,10]);
title('Charge'); ylabel('Q(t)'); grid
subplot(2,2,3); ezplot(I1,[5,25]);
title('Current'); ylabel('I1(t)'); grid
text(7,0.25,'Transient'); text(16,0.125,'Steady State');
subplot(2,2,4); ezplot(Q,[5,25]);
title('Charge'); ylabel('Q(t)'); grid
text(7,0.25,'Transient'); text(15,0.16,'Steady State');

generate the desired plots

Note that the circuit’s behavior, which appears to be exponential decay in
the short term, turns out to be oscillatory in the long term. The apparent
discrepancy arises because the circuit’s behavior actually has two components:

2-106

Compute Laplace and Inverse Laplace Transforms

an exponential part that decays rapidly (the “transient” component) and an
oscillatory part that persists (the “steady-state” component).

2-107

2 Using Symbolic Math Toolbox™ Software

Compute Z-Transforms and Inverse Z-Transforms
The (one-sided) z-transform of a function f(n) is defined as

Z f z f n z n

n
[]() = −

=

∞

∑ () .
0

The notation Z[f] refers to the z-transform of f at z. Let R be a positive number
so that the function g(z) is analytic on and outside the circle |z| = R. Then
the inverse z-transform (IZT) of g at n is defined as

Z g n
i

g z z dz nn

z R

 1 11
2

1 2() () , , ,...

The notation Z–1[f] means the IZT of f at n. The Symbolic Math Toolbox
commands ztrans and iztrans apply the z-transform and IZT to symbolic
expressions, respectively. See ztrans and iztrans for tables showing various
mathematical representations of the z-transform and inverse z-transform and
their Symbolic Math Toolbox counterparts.

The z-transform is often used to solve difference equations. In particular,
consider the famous “Rabbit Problem.” That is, suppose that rabbits reproduce
only on odd birthdays (1, 3, 5, 7, ...). If p(n) is the rabbit population at year n,
then p obeys the difference equation

p(n+2) = p(n+1) + p(n), p(0) = 1, p(1) = 2.

You can use ztrans to find the population each year p(n). First, apply ztrans
to the equations

syms p(n) z
eq = p(n + 2) - p(n + 1) - p(n);
Zeq = ztrans(eq, n, z)

to obtain

Zeq =
z*p(0) - z*ztrans(p(n), n, z) - z*p(1) + z^2*ztrans(p(n), n, z)

2-108

Compute Z-Transforms and Inverse Z-Transforms

- z^2*p(0) - ztrans(p(n), n, z)

Next, replace ztrans(p(n), n, z) with Pz and insert the initial conditions
for p(0) and p(1).

syms Pz
Zeq = subs(Zeq,{ztrans(p(n), n, z), p(0), p(1)}, {Pz, 1, 2})

to obtain

Zeq =
Pz*z^2 - z - Pz*z - Pz - z^2

Collecting terms

eq = collect(Zeq, Pz)

yields

eq =
(z^2 - z - 1)*Pz - z^2 - z

Now solve for Pz

P = solve(eq, Pz)

to obtain

P =
-(z^2 + z)/(- z^2 + z + 1)

To recover p(n), take the inverse z-transform of P.

p = iztrans(P, z, n);
p = simplify(p)

The result is a bit complicated, but explicit:

p =
4*(-1)^(n/2)*cos(n*(pi/2 + asinh(1/2)*i)) +...
1/2^n*((3*5^(1/2))/10 - 3/2)*(5^(1/2) + 1)^n -...
1/2^n*((3*5^(1/2))/10 + 3/2)*(1 - 5^(1/2))^n

2-109

2 Using Symbolic Math Toolbox™ Software

Finally, plot p:

m = 1:10;
y = double(subs(p,n,m));
plot(m, real(y),'rO')
title('Rabbit Population');
xlabel('years'); ylabel('p');
grid on

to show the growth in rabbit population over time.

References

[1] Andrews, L.C., Shivamoggi, B.K., Integral Transforms for Engineers and
Applied Mathematicians, Macmillan Publishing Company, New York, 1986

[2] Crandall, R.E., Projects in Scientific Computation, Springer-Verlag
Publishers, New York, 1994

2-110

Compute Z-Transforms and Inverse Z-Transforms

[3] Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge
Press, Wellesley, MA, 1986

2-111

2 Using Symbolic Math Toolbox™ Software

Create Plots

In this section...

“Plot with Symbolic Plotting Functions” on page 2-112

“Plot with MATLAB Plotting Functions” on page 2-115

“Plot Multiple Symbolic Functions in One Graph” on page 2-117

“Plot Multiple Symbolic Functions in One Figure” on page 2-119

“Combine Symbolic Function Plots and Numeric Data Plots” on page 2-120

Plot with Symbolic Plotting Functions
MATLAB provides many techniques for plotting numerical data. Graphical
capabilities of MATLAB include plotting tools, standard plotting functions,
graphic manipulation and data exploration tools, and tools for printing and
exporting graphics to standard formats. Symbolic Math Toolbox expands
these graphical capabilities and lets you plot symbolic functions using:

• ezplot to create 2-D plots of symbolic expressions, equations, or functions
in Cartesian coordinates.

• ezplot3 to create 3-D parametric plots. To create animated plots, use
the animate option.

• ezpolar that creates plots in polar coordinates.

• ezsurf to create surface plots. The ezsurfc plotting function creates
combined surface and contour plots.

• ezcontour to create contour plots. The ezcontourf function creates filled
contour plots.

• ezmesh to create mesh plots. The ezmeshc function creates combined mesh
and contour plots.

For example, plot the symbolic expression sin(6x) in Cartesian coordinates.
By default, ezplot uses the range –2π < x < 2π :

syms x
ezplot(sin(6*x))

2-112

Create Plots

ezplot also can plot symbolic equations that contain two variables. To define
an equation, use ==. For example, plot this trigonometric equation:

syms x y
ezplot(sin(x) + sin(y) == sin(x*y))

2-113

2 Using Symbolic Math Toolbox™ Software

When plotting a symbolic expression, equation, or function, ezplot uses the
default 60-by-60 grid (mesh setting). The plotting function does not adapt the
mesh setting around steep parts of a function plot or around singularities.
(These parts are typically less smooth than the rest of a function plot.) Also,
ezplot does not let you change the mesh setting.

To plot a symbolic expression or function in polar coordinates r (radius) and θ
(polar angle), use the ezpolar plotting function. By default, ezpolar plots a
symbolic expression or function over the domain 0 < θ < 2π . For example,
plot the expression sin(6t) in polar coordinates:

syms t
ezpolar(sin(6*t))

2-114

Create Plots

Plot with MATLAB Plotting Functions
When plotting a symbolic expression, you also can use the plotting functions
provided by MATLAB. For example, plot the symbolic expression ex/2 sin(10x).
First, use matlabFunction to convert the symbolic expression to a MATLAB
function. The result is a function handle h that points to the resulting
MATLAB function:

syms x
h = matlabFunction(exp(x/2)*sin(10*x));

Now, plot the resulting MATLAB function by using one of the standard
plotting functions that accept function handles as arguments. For example,
use the fplot function:

2-115

2 Using Symbolic Math Toolbox™ Software

fplot(h, [0 10])
hold on
title('exp(x/2)*sin(10*x)')
hold off

An alternative approach is to replace symbolic variables in an expression with
numeric values by using the subs function. For example, in the following
expressions u and v, substitute the symbolic variables x and y with the
numeric values defined by meshgrid:

syms x y
u = sin(x^2 + y^2); v = cos(x*y);
[X, Y] = meshgrid(-1:.1:1,-1:.1:1);
U = subs(u, [x y], {X,Y}); V = subs(v, [x y], {X,Y});

2-116

Create Plots

Now, you can use standard MATLAB plotting functions to plot the expressions
U and V. For example, create the plot of a vector field defined by the functions
U(X, Y) and V(X, Y):

quiver(X, Y, U, V)

Plot Multiple Symbolic Functions in One Graph
To plot several symbolic functions in one graph, add them to the graph
sequentially. To be able to add a new function plot to the graph that already
contains a function plot, use the hold on command. This command retains
the first function plot in the graph. Without this command, the system
replaces the existing plot with the new one. Now, add new plots. Each
new plot appears on top of the existing plots. While you use the hold on
command, you also can change the elements of the graph (such as colors,
line styles, line widths, titles) or add new elements. When you finish adding

2-117

2 Using Symbolic Math Toolbox™ Software

new function plots to a graph and modifying the graph elements, enter the
hold off command:

syms x y
ezplot(exp(x)*sin(20*x) - y, [0, 3, -20, 20])
hold on
p1 = ezplot(exp(x) - y, [0, 3, -20, 20]);
set(p1,'Color','red', 'LineStyle', '--', 'LineWidth', 2)
p2 = ezplot(-exp(x) - y, [0, 3, -20, 20]);
set(p2,'Color','red', 'LineStyle', '--', 'LineWidth', 2)
title('exp(x)sin(20x)')
hold off

2-118

Create Plots

Plot Multiple Symbolic Functions in One Figure
To display several function plots in one figure without overlapping, divide a
figure window into several rectangular panes (tiles). Then, you can display
each function plot in its own pane. For example, you can assign different
values to symbolic parameters of a function, and plot the function for each
value of a parameter. Collecting such plots in one figure can help you compare
the plots. To display multiple plots in the same window, use the subplot
command:

subplot(m,n,p)

This command partitions the figure window into an m-by-n matrix of small
subplots and selects the subplot p for the current plot. MATLAB numbers the
subplots along the first row of the figure window, then the second row, and so
on. For example, plot the expression sin(x^2 + y^2)/a for the following four
values of the symbolic parameter a:

syms x y
z = x^2 + y^2;
subplot(2, 2, 1); ezsurf(sin(z/100))
subplot(2, 2, 2); ezsurf(sin(z/50))
subplot(2, 2, 3); ezsurf(sin(z/20))
subplot(2, 2, 4); ezsurf(sin(z/10))

2-119

2 Using Symbolic Math Toolbox™ Software

Combine Symbolic Function Plots and Numeric Data
Plots
The combined graphical capabilities of MATLAB and the Symbolic Math
Toolbox software let you plot numeric data and symbolic functions in one
graph. Suppose, you have two discrete data sets, x and y. Use the scatter
plotting function to plot these data sets as a collection of points with
coordinates (x1, y1), (x2, y2), ..., (x3, y3):

x = 0:pi/10:4*pi;
y = sin(x) + (-1).^randi(10, 1, 41).*rand(1, 41)./2;
scatter(x, y)

2-120

Create Plots

Now, suppose you want to plot the sine function on top of the scatter plot in the
same graph. First, use the hold on command to retain the current plot in the
figure. (Without this command, the symbolic plot that you are about to create
replaces the numeric data plot.) Then, use ezplot to plot the sine function.
By default, MATLAB does not use a different color for a new function; the sine
function appears in blue. To change the color or any other property of the plot,
create the handle for the ezplot function call, and then use the set function:

hold on
syms t
p = ezplot(sin(t), [0 4*pi]);
set(p,'Color','red')

2-121

2 Using Symbolic Math Toolbox™ Software

MATLAB provides the plotting functions that simplify the process of
generating spheres, cylinders, ellipsoids, and so on. The Symbolic Math
Toolbox software lets you create a symbolic function plot in the same graph
with these volumes. For example, use the following commands to generate
the spiral function plot wrapped around the top hemisphere. The animate
option switches the ezplot3 function to animation mode. The red dot on the
resulting graph moves along the spiral:

syms t
x = (1-t)*sin(100*t);
y = (1-t)*cos(100*t);
z = sqrt(1 - x^2 - y^2);
ezplot3(x, y, z, [0 1], 'animate')
title('Symbolic Parametric Plot')

2-122

Create Plots

Add the sphere with radius 1 and the center at (0, 0, 0) to this graph. The
sphere function generates the required sphere, and the mesh function creates
a mesh plot for that sphere. Combining the plots clearly shows that the
symbolic parametric function plot is wrapped around the top hemisphere:

hold on
[X,Y,Z] = sphere;
mesh(X, Y, Z)
colormap(gray)
title('Symbolic Parametric Plot and a Sphere')

2-123

2 Using Symbolic Math Toolbox™ Software

2-124

Explore Function Plots

Explore Function Plots
Plotting a symbolic function can help you visualize and explore the features
of the function. Graphical representation of a symbolic function can also
help you communicate your ideas or results. MATLAB displays a graph in a
special window called a figure window. This window provides interactive tools
for further exploration of a function or data plot.

2-125

2 Using Symbolic Math Toolbox™ Software

Interactive data exploration tools are available in the Figure Toolbar and
also from the Tools menu. By default, a figure window displays one toolbar
that provides shortcuts to the most common operations. You can enable two
other toolbars from the View menu. When exploring symbolic function plots,
use the same operations as you would for the numeric data plots. For example:

• Zoom in and out on particular parts of a graph (). Zooming allows
you to see small features of a function plot. Zooming behaves differently
for 2-D or 3-D views.

• Shift the view of the graph with the pan tool (). Panning is useful when
you have zoomed in on a graph and want to move around the plot to view
different portions.

• Rotate 3-D graphs (). Rotating 3-D graphs allows you to see more
features of the surface and mesh function plots.

• Display particular data values on a graph and export them to MATLAB

workspace variables ().

2-126

Edit Graphs

Edit Graphs
MATLAB supports the following two approaches for editing graphs:

• Interactive editing lets you use the mouse to select and edit objects on
a graph.

• Command-line editing lets you use MATLAB commands to edit graphs.

These approaches work for graphs that display numeric data plots, symbolic
function plots, or combined plots.

To enable the interactive plot editing mode in the MATLAB figure window,

click the Edit Plot button () or select Tools > Edit Plot from the main
menu. If you enable plot editing mode in the MATLAB figure window, you
can perform point-and-click editing of your graph. In this mode, you can
modify the appearance of a graphics object by double-clicking the object and
changing the values of its properties.

The complete collection of properties is accessible through a graphical user
interface called the Property Editor. To open a graph in the Property Editor
window:

1 Enable plot editing mode in the MATLAB figure window.

2 Double-click any element on the graph.

If you prefer to work from the MATLAB command line or if you want to create
a code file, you can edit graphs by using MATLAB plotting commands. Also,
you can combine the interactive and command-line editing approaches to
achieve the look you want for the graphs you create.

2-127

2 Using Symbolic Math Toolbox™ Software

Save Graphs
After you create, edit, and explore a function plot, you might want to save the
result. MATLAB provides three different ways to save graphs:

• Save a graph as a MATLAB FIG-file (a binary format). The FIG-file
stores all information about a graph, including function plots, graph data,
annotations, data tips, menus and other controls. You can open the FIG-file
only with MATLAB.

• Export a graph to a different file format. When saving a graph, you can
choose a file format other than FIG. For example, you can export your
graphs to EPS, JPEG, PNG, BMP, TIFF, PDF, and other file formats. You
can open the exported file in an appropriate application.

• Print a graph on paper or print it to file. To ensure the correct plot size,
position, alignment, paper size and orientation, use Print Preview.

• Generate a MATLAB file from a graph. You can use the generated code to
reproduce the same graph or create a similar graph using different data.
This approach is useful for generating MATLAB code for work that you
have performed interactively with the plotting tools.

2-128

Generate C or Fortran Code

Generate C or Fortran Code
You can generate C or Fortran code fragments from a symbolic expression,
or generate files containing code fragments, using the ccode and fortran
functions. These code fragments calculate numerical values as if substituting
numbers for variables in the symbolic expression.

To generate code from a symbolic expression g, enter either ccode(g) or
fortran(g).

For example:

syms x y
z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;
fortran(z)

ans =
t0 = (x**4*3.0D1)/(x*y**2+1.0D1)-x**3*(y**2+1.0D0)**2

ccode(z)

ans =
t0 =

((x*x*x*x)*3.0E1)/(x*(y*y)+1.0E1)-(x*x*x)*pow(y*y+1.0,2.0);

To generate a file containing code, either enter ccode(g,'file','filename')
or fortran(g,'file','filename'). For the example above,

fortran(z, 'file', 'fortrantest')

generates a file named fortrantest in the current folder. fortrantest
consists of the following:

t12 = x**2
t13 = y**2
t14 = t13+1
t0 = (t12**2*30)/(t13*x+10)-t12*t14**2*x

Similarly, the command

2-129

2 Using Symbolic Math Toolbox™ Software

ccode(z,'file','ccodetest')

generates a file named ccodetest that consists of the lines

t16 = x*x;
t17 = y*y;
t18 = t17+1.0;
t0 = ((t16*t16)*3.0E1)/(t17*x+1.0E1)-t16*(t18*t18)*x;

ccode and fortran generate many intermediate variables. This is called
optimized code. MATLAB generates intermediate variables as a lowercase
letter t followed by an automatically generated number, for example t32.
Intermediate variables can make the resulting code more efficient by reusing
intermediate expressions (such as t12 in fortrantest, and t16 in ccodetest).
They can also make the code easier to read by keeping expressions short.

If you work in the MuPAD notebook interface, see generate::C and
generate::fortran.

2-130

Generate MATLAB® Functions

Generate MATLAB Functions
You can use matlabFunction to generate a MATLAB function handle that
calculates numerical values as if you were substituting numbers for variables
in a symbolic expression. Also, matlabFunction can create a file that
accepts numeric arguments and evaluates the symbolic expression applied
to the arguments. The generated file is available for use in any MATLAB
calculation, whether or not the computer running the file has a license for
Symbolic Math Toolbox functions.

If you work in the MuPAD notebook interface, see “Create MATLAB
Functions from MuPAD Expressions” on page 3-48.

Generating a Function Handle
matlabFunction can generate a function handle from any symbolic
expression. For example:

syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(tanh(r))

ht =
@(x,y)tanh(sqrt(x.^2+y.^2))

You can use this function handle to calculate numerically:

ht(.5,.5)

ans =
0.6089

You can pass the usual MATLAB double-precision numbers or matrices to
the function handle. For example:

cc = [.5,3];
dd = [-.5,.5];
ht(cc, dd)

ans =
0.6089 0.9954

2-131

2 Using Symbolic Math Toolbox™ Software

Control the Order of Variables
matlabFunction generates input variables in alphabetical order from a
symbolic expression. That is why the function handle in “Generating a
Function Handle” on page 2-131 has x before y:

ht = @(x,y)tanh((x.^2 + y.^2).^(1./2))

You can specify the order of input variables in the function handle using
the vars option. You specify the order by passing a cell array of strings or
symbolic arrays, or a vector of symbolic variables. For example:

syms x y z
r = sqrt(x^2 + 3*y^2 + 5*z^2);
ht1 = matlabFunction(tanh(r), 'vars', [y x z])

ht1 =
@(y,x,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht2 = matlabFunction(tanh(r), 'vars', {'x', 'y', 'z'})

ht2 =
@(x,y,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht3 = matlabFunction(tanh(r), 'vars', {'x', [y z]})

ht3 =
@(x,in2)tanh(sqrt(x.^2+in2(:,1).^2.*3.0+in2(:,2).^2.*5.0))

Generate a File
You can generate a file from a symbolic expression, in addition to a function
handle. Specify the file name using the file option. Pass a string containing
the file name or the path to the file. If you do not specify the path to the file,
matlabFunction creates this file in the current folder.

This example generates a file that calculates the value of the symbolic matrix
F for double-precision inputs t, x, and y:

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];

2-132

Generate MATLAB® Functions

matlabFunction(F,'file','testMatrix.m')

The file testMatrix.m contains the following code:

function F = testMatrix(t,x,y)
%TESTMATRIX
% F = TESTMATRIX(T,X,Y)

t2 = x.^2;
t3 = tan(y);
t4 = t2.*x;
t5 = t.^2;
t6 = t5 + 1;
t7 = 1./y;
t8 = t6.*t7.*x;
t9 = t3 + t4;
t10 = 1./t9;
F = [-(t10.*(t3 - t4))./t6,t8; t8,- t10.*(3.*t3 - 3.*t2.*x) - 1];

matlabFunction generates many intermediate variables. This is called
optimized code. MATLAB generates intermediate variables as a lowercase
letter t followed by an automatically generated number, for example t32.
Intermediate variables can make the resulting code more efficient by reusing
intermediate expressions (such as t4, t6, t8, t9, and t10 in the calculation of
F). Using intermediate variables can make the code easier to read by keeping
expressions short.

If you don’t want the default alphabetical order of input variables, use the
vars option to control the order. Continuing the example,

matlabFunction(F,'file','testMatrix.m','vars',[x y t])

generates a file equivalent to the previous one, with a different order of inputs:

function F = testMatrix(x,y,t)
...

Name Output Variables
By default, the names of the output variables coincide with the names you
use calling matlabFunction. For example, if you call matlabFunction with
the variable F

2-133

2 Using Symbolic Math Toolbox™ Software

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w, (1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m','vars',[x y t])

the generated name of an output variable is also F:

function F = testMatrix(x,y,t)
...

If you call matlabFunction using an expression instead of individual variables

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(w + z + F,'file','testMatrix.m',...
'vars',[x y t])

the default names of output variables consist of the word out followed by the
number, for example:

function out1 = testMatrix(x,y,t)
...

To customize the names of output variables, use the output option:

syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;
f = matlabFunction(r, q, 'file', 'new_function',...
'outputs', {'name1','name2'})

The generated function returns name1 and name2 as results:

function [name1,name2] = new_function(x,y,z)
...

Convert MuPAD Expressions
You can convert a MuPAD expression or function to a MATLAB function:

2-134

Generate MATLAB® Functions

syms x y
f = evalin(symengine, 'arcsin(x) + arccos(y)');
matlabFunction(f, 'file', 'new_function');

The created file contains the same expressions written in the MATLAB
language:

function f = new_function(x,y)
%NEW_FUNCTION
% F = NEW_FUNCTION(X,Y)

f = asin(x) + acos(y);

Tip matlabFunction cannot correctly convert some MuPAD expressions to
MATLAB functions. These expressions do not trigger an error message. When
converting a MuPAD expression or function that is not on the MATLAB vs.
MuPAD Expressions list, always check the results of conversion. To verify the
results, execute the resulting function.

2-135

2 Using Symbolic Math Toolbox™ Software

Generate MATLAB Function Blocks
Using matlabFunctionBlock, you can generate a MATLAB Function block.
The generated block is available for use in Simulink models, whether or
not the computer running the simulations has a license for Symbolic Math
Toolbox.

If you work in the MuPAD notebook interface, see “Create MATLAB Function
Blocks from MuPAD Expressions” on page 3-52.

Generate and Edit a Block
Suppose, you want to create a model involving the symbolic expression r
= sqrt(x^2 + y^2). Before you can convert a symbolic expression to a
MATLAB Function block, create an empty model or open an existing one:

new_system('my_system')
open_system('my_system')

Create a symbolic expression and pass it to the matlabFunctionBlock
command. Also specify the block name:

syms x y
r = sqrt(x^2 + y^2);
matlabFunctionBlock('my_system/my_block', r)

If you use the name of an existing block, the matlabFunctionBlock command
replaces the definition of an existing block with the converted symbolic
expression.

You can open and edit the generated block. To open a block, double-click it.

function r = my_block(x,y)
%#codegen

r = sqrt(x.^2+y.^2);

2-136

Generate MATLAB® Function Blocks

Control the Order of Input Ports
matlabFunctionBlock generates input variables and the corresponding input
ports in alphabetical order from a symbolic expression. To change the order of
input variables, use the vars option:

syms x y
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
matlabFunctionBlock('my_system/vdp', dydt,...
'vars', [y mu x])

Name the Output Ports
By default, matlabFunctionBlock generates the names of the output ports
as the word out followed by the output port number, for example, out3. The
output option allows you to use the custom names of the output ports:

syms x y
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
matlabFunctionBlock('my_system/vdp', dydt,...
'outputs',{'name1'})

Convert MuPAD Expressions
You can convert a MuPAD expression or function to a MATLAB Function
block:

syms x y
f = evalin(symengine, 'arcsin(x) + arccos(y)');
matlabFunctionBlock('my_system/my_block', f)

The resulting block contains the same expressions written in the MATLAB
language:

function f = my_block(x,y)
%#codegen

f = asin(x) + acos(y);

2-137

2 Using Symbolic Math Toolbox™ Software

Tip Some MuPAD expressions cannot be correctly converted to a block. These
expressions do not trigger an error message. When converting a MuPAD
expression or function that is not on the MATLAB vs. MuPAD Expressions
list, always check the results of conversion. To verify the results, you can:

• Run the simulation containing the resulting block.

• Open the block and verify that all the functions are defined in Functions
Supported for Code Generation.

2-138

http://www.mathworks.com/help/ecoder/functions-supported-for-code-generation.html
http://www.mathworks.com/help/ecoder/functions-supported-for-code-generation.html

Generate Simscape™ Equations

Generate Simscape Equations
Simscape software extends the Simulink product line with tools for modeling
and simulating multidomain physical systems, such as those with mechanical,
hydraulic, pneumatic, thermal, and electrical components. Unlike other
Simulink blocks, which represent mathematical operations or operate on
signals, Simscape blocks represent physical components or relationships
directly. With Simscape blocks, you build a model of a system just as you
would assemble a physical system. For more information about Simscape
software see www.mathworks.com/products/simscape/.

You can extend the Simscape modeling environment by creating custom
components. When you define a component, use the equation section of
the component file to establish the mathematical relationships among a
component’s variables, parameters, inputs, outputs, time, and the time
derivatives of each of these entities. The Symbolic Math Toolbox and
Simscape software let you perform symbolic computations and use the results
of these computations in the equation section. The simscapeEquation
function translates the results of symbolic computations to Simscape language
equations.

If you work in the MuPAD notebook interface, see “Create Simscape
Equations from MuPAD Expressions” on page 3-54.

Convert Algebraic and Differential Equations
Suppose, you want to generate a Simscape equation from the solution of
the following ordinary differential equation. As a first step, use the dsolve
function to solve the equation:

syms a y(t)
Dy = diff(y);
s = dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0);
s = simplify(s)

The solution is:

s =
cos(a*t)

2-139

http://www.mathworks.com/products/simscape/

2 Using Symbolic Math Toolbox™ Software

Then, use the simscapeEquation function to rewrite the solution in the
Simscape language:

simscapeEquation(s)

simscapeEquation generates the following code:

ans =
s == cos(a*time);

The variable time replaces all instances of the variable t except for derivatives
with respect to t. To use the generated equation, copy the equation and paste
it to the equation section of the Simscape component file. Do not copy the
automatically generated variable ans and the equal sign that follows it.

simscapeEquation converts any derivative with respect to the variable t to
the Simscape notation, X.der, where X is the time-dependent variable. For
example, convert the following differential equation to a Simscape equation.
Also, here you explicitly specify the left and the right sides of the equation by
using the syntax simscapeEquation(LHS, RHS):

syms a x(t)
simscapeEquation(diff(x), -a^2*x)

ans =
x.der == -a^2*x;

simscapeEquation also translates piecewise expressions to the Simscape
language. For example, the result of the following Fourier transform is a
piecewise function:

syms v u x
assume(x, 'real')
f = exp(-x^2*abs(v))*sin(v)/v;
s = fourier(f, v, u)

s =
piecewise([x ~= 0, atan((u + 1)/x^2) - atan((u - 1)/x^2)])

From this symbolic piecewise equation, simscapeEquation generates valid
code for the equation section of a Simscape component file:

2-140

Generate Simscape™ Equations

simscapeEquation(s)

ans =
s == if (x ~= 0.0),

-atan(1.0/x^2*(u-1.0))+atan(1.0/x^2*(u+1.0));
else

NaN;
end;

Clear the assumption that x is real:

syms x clear

Convert MuPAD Equations
If you perform symbolic computations in the MuPAD Notebook Interface
and want to convert the results to Simscape equations, use the
generate::Simscape function in MuPAD.

Limitations
The equation section of a Simscape component file supports a limited number
of functions. See the list of Supported Functions for more information. If
a symbolic equation contains the functions that the equation section of
a Simscape component file does not support. simscapeEquation cannot
correctly convert these equations to Simscape equations. Such expressions do
not trigger an error message. The following types of expressions are prone
to invalid conversion:

• Expressions with infinities

• Expressions returned by evalin and feval

2-141

http://www.mathworks.com/help/toolbox/physmod/simscape/lang/equations.html#brtts6o

2 Using Symbolic Math Toolbox™ Software

Special Functions of Applied Mathematics

In this section...

“Evaluate Special Functions Numerically Using mfun” on page 2-142

“Syntax and Definitions of mfun Special Functions” on page 2-143

“Diffraction Example” on page 2-148

Evaluate Special Functions Numerically Using mfun
Over 50 of the special functions of classical applied mathematics are available
in the toolbox. These functions are accessed with the mfun function, which
numerically evaluates special functions for the specified parameters. This
allows you to evaluate functions that are not available in standard MATLAB
software, such as the Fresnel cosine integral. In addition, you can evaluate
several MATLAB special functions in the complex plane, such as the error
function erf.

For example, suppose you want to evaluate the hyperbolic cosine integral at
the points 2 + i, 0, and 4.5. Look in the tables in “Syntax and Definitions of
mfun Special Functions” on page 2-143 to find the available functions and
their syntax. You can also enter the command

mfunlist

to see the list of functions available for mfun. This list provides a brief
mathematical description of each function, its mfun name, and the parameters
it needs. From the tables or list, you can see that the hyperbolic cosine
integral is called Chi, and it takes one complex argument.

Type

z = [2 + i 0 4.5];
w = mfun('Chi', z)

which returns

w =
2.0303 + 1.7227i NaN 13.9658

2-142

Special Functions of Applied Mathematics

mfun returns the special value NaN where the function has a singularity. The
hyperbolic cosine integral has a singularity at z = 0.

Note mfun functions perform numerical, not symbolic, calculations. The
input parameters should be scalars, vectors, or matrices of type double, or
complex doubles, not symbolic variables.

Syntax and Definitions of mfun Special Functions
The following conventions are used in the next table, unless otherwise
indicated in the Arguments column.

x, y real argument

z, z1, z2 complex argument

m, n integer argument

mfun Special Functions

Function Name Definition mfun Name Arguments

Bernoulli
numbers and
polynomials

Generating functions:

e

e
B x

t
n

xt

t n

n

n−
= ⋅

−

=

∞

∑
1

1

0
()

!

bernoulli(n)

bernoulli(n,t)
n ≥ 0

0 2< <t π

Bessel functions BesselI, BesselJ—Bessel functions
of the first kind.
BesselK, BesselY—Bessel functions
of the second kind.

BesselJ(v,x)

BesselY(v,x)

BesselI(v,x)

BesselK(v,x)

v is real.

Beta function
B x y

x y
x y

(,)
() ()
()

= ⋅
+

Γ Γ
Γ

Beta(x,y)

2-143

2 Using Symbolic Math Toolbox™ Software

mfun Special Functions (Continued)

Function Name Definition mfun Name Arguments

Binomial
coefficients

m
n

m
n m n

⎛
⎝⎜

⎞
⎠⎟
=

−()
!

! !

= +
+() − +
Γ

Γ Γ
()

()
m

n m n
1

1 1

binomial(m,n)

Complete elliptic
integrals

Legendre’s complete elliptic integrals
of the first, second, and third kind.
This definition uses modulus k. The
numerical ellipke function and the
MuPAD functions for computing
elliptic integrals use the parameter

m k= =2 2sin .

EllipticK(k)

EllipticE(k)

EllipticPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complete elliptic
integrals with
complementary
modulus

Associated complete elliptic integrals
of the first, second, and third kind
using complementary modulus. This
definition uses modulus k. The
numerical ellipke function and the
MuPAD functions for computing
elliptic integrals use the parameter

m k= =2 2sin .

EllipticCK(k)

EllipticCE(k)

EllipticCPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complementary
error function
and its iterated
integrals

erfc z e dt erf zt

z

() ()= ⋅ = −−
∞

∫2
1

2

erfc z e z(,)− = ⋅ −1
2 2

erfc n z erfc n t dt
z

(,) (,)= −
∞

∫ 1

erfc(z)

erfc(n,z)

n > 0

2-144

Special Functions of Applied Mathematics

mfun Special Functions (Continued)

Function Name Definition mfun Name Arguments

Dawson’s
integral F x e e dtx t

x

() = ⋅− ∫
2 2

0

dawson(x)

Digamma
function Ψ Γ Γ

Γ
() ln(())

()
()

x
d
dx

x
x
x

= =
′ Psi(x)

Dilogarithm
integral f x

t
t

dt
x

()
ln()=
−∫ 1

1

dilog(x) x > 1

Error function
erf z e dtt

z

() = −∫2 2

0

erf(z)

Euler numbers
and polynomials

Generating function for Euler
numbers:

1

0cosh() !t
E

t
nn

n

n
=

=

∞

∑

euler(n)

euler(n,z)

n ≥ 0

t <
2

Exponential
integrals Ei n z

e

t
dt

zt

n
(,) =

−∞

∫
1

Ei x PV
e
t

tx

() = −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−∞
∫

Ei(n,z)

Ei(x)

n ≥ 0

Real(z) > 0

Fresnel sine and
cosine integrals C x t dt

x

() cos= ⎛
⎝⎜

⎞
⎠⎟∫

2
2

0

S x t dt
x

() sin= ⎛
⎝⎜

⎞
⎠⎟∫

2
2

0

FresnelC(x)

FresnelS(x)

2-145

2 Using Symbolic Math Toolbox™ Software

mfun Special Functions (Continued)

Function Name Definition mfun Name Arguments

Gamma function
Γ()z t e dtz t= − −

∞

∫ 1

0

GAMMA(z)

Harmonic
function h n

k
n

k

n
() ()= = + +

=
∑ 1

1
1

Ψ γ
harmonic(n) n > 0

Hyperbolic sine
and cosine
integrals

Shi z
t

t
dt

z

()
sinh()= ∫

0

Chi z z
t

t
dt

z

() ln()
cosh()= + + −∫γ 1

0

Shi(z)

Chi(z)

(Generalized)
hypergeometric
function F n d z

n k
n

z

d k
d

k

i

i

k

i

j

i

ii

m
k

(, ,)

()
()

()
()

!

=

+ ⋅

+ ⋅

=

=

=

∞ ∏

∏
∑

Γ
Γ

Γ
Γ

1

1

0

where j and m are the number of terms
in n and d, respectively.

hypergeom(n,d,x)

where

n = [n1,n2,...]

d = [d1,d2,...]

n1,n2,... are
real.

d1,d2,...
are real and
nonnegative.

Incomplete
elliptic integrals

Legendre’s incomplete elliptic
integrals of the first, second, and third
kind. This definition uses modulus k.
The numerical ellipke function and
the MuPAD functions for computing
elliptic integrals use the parameter

m k= =2 2sin .

EllipticF(x,k)

EllipticE(x,k)

EllipticPi(x,a,k)

0 < x ≤ ∞.

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Incomplete
gamma function Γ(,)a z e t dtt a

z

= ⋅− −
∞

∫ 1
GAMMA(z1,z2)

z1 = a
z2 = z

2-146

Special Functions of Applied Mathematics

mfun Special Functions (Continued)

Function Name Definition mfun Name Arguments

Logarithm of the
gamma function

lnGAMMA() ln(())z z= Γ lnGAMMA(z)

Logarithmic
integral Li x PV

dt
t

Ei x
x

()
ln

(ln)=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=∫

0

Li(x) x > 1

Polygamma
function Ψ Ψ() () ()n

n
z

d
dz

z=

where Ψ()z is the Digamma function.

Psi(n,z) n ≥ 0

Shifted sine
integral Ssi z Si z() ()= −

2

Ssi(z)

The following orthogonal polynomials are available using mfun. In all cases, n
is a nonnegative integer and x is real.

Orthogonal Polynomials

Polynomial mfun Name Arguments

Chebyshev of the first
and second kind

T(n,x)

U(n,x)

Gegenbauer G(n,a,x) a is a nonrational algebraic
expression or a rational
number greater than -1/2.

Hermite H(n,x)

Jacobi P(n,a,b,x) a, b are nonrational
algebraic expressions or
rational numbers greater
than -1.

Laguerre L(n,x)

2-147

2 Using Symbolic Math Toolbox™ Software

Orthogonal Polynomials (Continued)

Polynomial mfun Name Arguments

Generalized Laguerre L(n,a,x) a is a nonrational algebraic
expression or a rational
number greater than -1.

Legendre P(n,x)

Diffraction Example
This example is from diffraction theory in classical electrodynamics. (J.D.
Jackson, Classical Electrodynamics, John Wiley & Sons, 1962).

Suppose you have a plane wave of intensity I0 and wave number k. Assume
that the plane wave is parallel to the xy-plane and travels along the z-axis
as shown below. This plane wave is called the incident wave. A perfectly
conducting flat diffraction screen occupies half of the xy-plane, that is x < 0.
The plane wave strikes the diffraction screen, and you observe the diffracted
wave from the line whose coordinates are (x, 0, z0), where z0 > 0.

2-148

Special Functions of Applied Mathematics

The intensity of the diffracted wave is given by

I
I

C S= () +⎛
⎝⎜

⎞
⎠⎟
+ () +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥0

2 2

2
1
2

1
2

 ,

where

 = ⋅k
z

x
2 0

,

and C() and S() are the Fresnel cosine and sine integrals:

C t dt
() = ⎛
⎝⎜

⎞
⎠⎟∫ cos

0
2

2

S t dt
() = ⎛
⎝⎜

⎞
⎠⎟∫ sin .

2
2

0

2-149

2 Using Symbolic Math Toolbox™ Software

How does the intensity of the diffracted wave behave along the line of
observation? Since k and z0 are constants independent of x, you set

k
z2

1
0
= ,

and assume an initial intensity of I0 = 1 for simplicity.

The following code generates a plot of intensity as a function of x:

x = -50:50;
C = mfun('FresnelC',x);
S = mfun('FresnelS',x);
I0 = 1;
T = (C+1/2).^2 + (S+1/2).^2;
I = (I0/2)*T;
plot(x,I);
xlabel('x');
ylabel('I(x)');
title('Intensity of Diffracted Wave');

−50 0 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

I(
x)

Intensity of Diffracted Wave

2-150

Special Functions of Applied Mathematics

You see from the graph that the diffraction effect is most prominent near the
edge of the diffraction screen (x = 0), as you expect.

Note that values of x that are large and positive correspond to observation
points far away from the screen. Here, you would expect the screen to have
no effect on the incident wave. That is, the intensity of the diffracted wave
should be the same as that of the incident wave. Similarly, x values that are
large and negative correspond to observation points under the screen that are
far away from the screen edge. Here, you would expect the diffracted wave to
have zero intensity. These results can be verified by setting

x = [Inf -Inf]

in the code to calculate I.

2-151

2 Using Symbolic Math Toolbox™ Software

2-152

3

MuPAD in Symbolic Math
Toolbox

• “MuPAD Engines and MATLAB Workspace” on page 3-2

• “Create, Open, and Save MuPAD Notebooks” on page 3-3

• “Calculate in a MuPAD Notebook” on page 3-6

• “Edit and Debug MuPAD Code” on page 3-12

• “Notebook Files and Program Files” on page 3-16

• “Source Code of the MuPAD Library Functions” on page 3-18

• “Differences Between MATLAB and MuPAD Syntax” on page 3-19

• “Copy Variables and Expressions Between MATLAB and MuPAD” on page
3-22

• “Reserved Variable and Function Names” on page 3-26

• “Open MuPAD Interfaces from MATLAB” on page 3-30

• “Call Built-In MuPAD Functions from MATLAB Command Window” on
page 3-32

• “Computations in MATLAB Command Window vs. MuPAD Notebook
Interface” on page 3-35

• “Use Your Own MuPAD Procedures” on page 3-39

• “Clear Assumptions and Reset the Symbolic Engine” on page 3-43

• “Create MATLAB Functions from MuPAD Expressions” on page 3-48

• “Create MATLAB Function Blocks from MuPAD Expressions” on page 3-52

• “Create Simscape Equations from MuPAD Expressions” on page 3-54

3 MuPAD® in Symbolic Math Toolbox™

MuPAD Engines and MATLAB Workspace
A MuPAD engine is a separate process that runs on your computer in
addition to a MATLAB process. A MuPAD engine starts when you first call a
function that needs a symbolic engine, such as syms. Symbolic Math Toolbox
functions that use the symbolic engine use standard MATLAB syntax, such
as y = int(x^2).

Conceptually, each MuPAD notebook has its own symbolic engine, with an
associated workspace. You can have any number of MuPAD notebooks open
simultaneously.

���������������������������
����������������������

������� !"��������#�����
���������$���������

�!�%!&�$��#�'��� �� !"��������#�(�� !"��������#�

�� !"�������

��������

�� !"�������

�������	

�� !"�������

�������

������
)��#�'���

������
)��#�'���

������
)��#�'���

The engine workspace associated with the MATLAB workspace is generally
empty, except for assumptions you make about variables. For details, see
“Clear Assumptions and Reset the Symbolic Engine” on page 3-43.

3-2

Create, Open, and Save MuPAD® Notebooks

Create, Open, and Save MuPAD Notebooks
To create a new MuPAD notebook from the MATLAB command line, enter

nb = mupad

You can use any variable name instead of nb. This syntax opens a blank
MuPAD notebook.

The variable nb is a handle to the notebook. The toolbox uses this handle
only for communication between the MATLAB workspace and the MuPAD
notebook. Use handles as described in “Copy Variables and Expressions
Between MATLAB and MuPAD” on page 3-22.

You also can open an existing MuPAD notebook file named file_name from
the MATLAB command line by entering

nb2 = mupad('file_name')

where file_name must be a full path unless the notebook is in the current
folder. This command is useful if you lose the handle to a notebook, in which
case, you can save the notebook file and then reopen it with a fresh handle.

Caution You can lose data when saving a MuPAD notebook. A notebook
saves its inputs and outputs, but not the state of its engine. In particular,
MuPAD does not save variables copied into a notebook using setVar(nb,...).

To open a notebook and automatically jump to a particular location, create a
link target at that location inside a notebook, and refer to it when opening a
notebook. For information about creating link targets, see “Work with Links”.
To refer to a link target when opening a notebook, enter:

nb2 = mupad('file_name#linktarget_name')

You also can open and save MuPAD notebook files using the usual file system
commands, and by using the MuPAD File menu. However, to be able to use a
handle to a notebook, you must open the notebook using the mupad command
at the MATLAB command line.

3-3

3 MuPAD® in Symbolic Math Toolbox™

Tip MuPAD notebook files open in an unevaluated state. In other words, the
notebook is not synchronized with its engine when it opens. To synchronize a
notebook with its engine, select Notebook > Evaluate All. For details, see
“Synchronize Notebook and its Engine” on page 3-10.

You also can use the Welcome to MuPAD dialog box to access various MuPAD
interfaces. To open this dialog box, enter:

mupadwelcome

• To access documentation, click one of the three options in the First Steps
pane.

• To open an existing file, click its name in the Open Recent File pane.

• To open a new notebook, click the New Notebook button.

• To open a new MATLAB Editor window, click the New Editor button.

3-4

Create, Open, and Save MuPAD® Notebooks

• To open an existing MuPAD notebook or program file, click Open File and
navigate to the file.

3-5

3 MuPAD® in Symbolic Math Toolbox™

Calculate in a MuPAD Notebook

Visual Elements of a Notebook
A MuPAD notebook has the following main components.

3-6

Calculate in a MuPAD® Notebook

• Enter commands for execution, evaluation, or plotting in input regions.

• Enter comments in text regions. You can type and format text in a notebook
similar to working in any word processing application.

• Use the Command Bar to help you enter commands into input regions
with the proper syntax.

• Use the Insert menu to add a text area (called Text Paragraph) or input
regions (called Calculation).

• Use the Notebook menu to evaluate expressions in input regions.

Work in a Notebook
The MuPAD notebook interface differs from the MATLAB interface. Things
to remember when working in a MuPAD notebook are:

• Commands typed in an input area are not evaluated until you press Enter.

• You can edit the commands typed in any input area. For example, you can
change a command, correct syntax, or try different values of parameters
simply by selecting the area you want to change and typing over it. Press
Enter to reevaluate the result.

• Results do not automatically cascade or propagate through a notebook, as
described in “Cascade Calculations” on page 3-7.

• The MATLAB method of recalling a previous command by pressing an up
arrow key does not have the same effect in a MuPAD notebook. Instead,
you use arrow keys for navigation in MuPAD notebooks, similar to most
word processors.

Cascade Calculations
If you change a variable in a notebook, the change does not automatically
propagate throughout the notebook. For example, consider the following set
of MuPAD commands:

3-7

3 MuPAD® in Symbolic Math Toolbox™

Now change the definition of z in the first line of the notebook from sin(x)
to cos(x) and press Enter:

Only the first line was reevaluated. Therefore y and z are no longer
synchronized. The notebook is in an inconsistent state.

3-8

Calculate in a MuPAD® Notebook

To have the changes cascade to all parts of the notebook, select Notebook
> Evaluate All.

The engine evaluates all the expressions in the notebook from top to bottom,
and the notebook becomes consistent:

3-9

3 MuPAD® in Symbolic Math Toolbox™

Synchronize Notebook and its Engine
When you open a saved MuPAD notebook file, the notebook display is not
synchronized with its engine. For example, suppose you saved the notebook
pictured in the start of “Cascade Calculations” on page 3-7:

3-10

Calculate in a MuPAD® Notebook

If you open that file and immediately try to work in it without synchronizing
the notebook with its engine, the expressions in the notebook display are
unavailable for calculations. For example, try to calculate u := (1+w)/w:

The variable w has no definition as far as the engine is concerned.

To remedy this situation, select Notebook > Evaluate All. The variable
u changes to reflect the value of w:

3-11

3 MuPAD® in Symbolic Math Toolbox™

Edit and Debug MuPAD Code

Edit the Code in the MATLAB Editor
The default interface for editing MuPAD code is the MATLAB Editor.
Alternatively, you can create and edit your code in any text editor. The
MATLAB Editor automatically formats the code and, therefore, helps you
avoid errors, or at least reduce their number.

Note The MATLAB Editor cannot evaluate or debug MuPAD code.

To open an existing MuPAD file with the extension .mu in the MATLAB
Editor, double-click the file name or select Open and navigate to the file.

After editing the code, save the file. Note that the extension .mu allows the
Editor to recognize and open MuPAD program files. Thus, if you intend

3-12

Edit and Debug MuPAD® Code

to open the files in the MATLAB Editor, save them with the extension
.mu. Otherwise, you can specify other extensions suitable for text files, for
example, .txt or .tst.

Debug the Code in the MuPAD Debugger
The MuPAD Debugger helps you find runtime errors in your code. This
interface lets you:

• Execute your code step by step.

• Set breakpoints, including conditional breakpoints.

• Observe the values of the variables and expressions in each step.

To open the Debugger:

1 Open a new or existing MuPAD notebook. For instructions, see “Create,
Open, and Save MuPAD Notebooks” on page 3-3.

2 In the main menu of a notebook, select Notebook > Debug.

3 In the resulting dialog box, enter the procedure call that you want to debug.

Alternatively, use the debug function in the MuPAD notebook.

3-13

3 MuPAD® in Symbolic Math Toolbox™

3-14

Edit and Debug MuPAD® Code

The default layout of the Debugger window displays four panes:

• The main pane (top-left by default) displays the code that you debug. The
Debugger only shows the code, but does not allow you to update it.

• The Output pane lets you type an expression and evaluate it anytime
during the debugging process.

• The Watch pane shows values of the variables at each step during the
debugging process.

• The Call Stack pane shows the names of the procedures that you debug.

You can close any pane, except for the main pane. If you close a pane, you
can restore it again by selecting View and the name of the required pane.
Using the View menu, you can also open the Breakpoints pane that shows
the list of breakpoints in the code.

You cannot fix bugs directly in the Debugger window. If you work in the
Debugger window and want to edit the code:

1 Open the file with the code in the MATLAB Editor.

Tip If you did not yet save this code to a program file, display the code in a
new Editor window by selecting File > New Editor with Source.

2 Close the Debugger if it is open.

3 Update the code in the MATLAB Editor and save it.

4 Open a notebook.

5 In the notebook, select Notebook > Read Commands from the main
menu and navigate to your updated file.

6 Open the Debugger from the notebook.

For details about the MuPAD Debugger, see “Trace Errors with the MuPAD
Debugger”.

3-15

3 MuPAD® in Symbolic Math Toolbox™

Notebook Files and Program Files
The two main types of files in MuPAD are:

• Notebook files, or notebooks

• Program files

A notebook file has the extension .mn and lets you store the result of the
work performed in the notebook interface. A notebook file can contain text,
graphics, and any MuPAD commands and their outputs. A notebook file can
also contain procedures and functions.

By default, a notebook file opens in the notebook interface. Creating a new
notebook or opening an existing one does not automatically start the MuPAD
engine. This means that although you can see the results of computations as
they were saved, MuPAD does not remember evaluating them. (The “MuPAD
Workspace” is empty.) You can evaluate any or all commands after opening
a notebook.

A program file is a text file that contains any code snippet that you want to
store separately from other computations. Saving a code snippet as a program
file can be very helpful when you want to use the code in several notebooks.
Typically, a program file contains a single procedure, but it also can contain
one or more procedures or functions, assignments, statements, tests, or any
other valid MuPAD code.

Tip If you use a program file to store a procedure, MuPAD does not require
the name of that program file to match the name of a procedure.

The most common approach is to write a procedure and save it as a program
file with the extension .mu. This extension allows the MATLAB Editor to
recognize and open the file later. Nevertheless, a program file is just a text
file. You can save a program file with any extension that you use for regular
text files.

3-16

Notebook Files and Program Files

To evaluate the commands from a program file, you must execute a program
file in a notebook. For details about executing program files, see “Read
MuPAD Procedures” on page 3-40.

3-17

3 MuPAD® in Symbolic Math Toolbox™

Source Code of the MuPAD Library Functions
You can display the source code of the MuPAD built-in library functions. If
you work in the MuPAD notebook interface, enter expose(name), where name
is the library function name. The notebook interface displays the code as plain
text with the original line breaks and indentations.

You can also display the code of a MuPAD library function in the MATLAB
Command Window. To do this, use the evalin or feval function to call the
MuPAD expose function:

sprintf(char(feval(symengine, 'expose', 'numlib::tau')))

ans =

proc(a)
name numlib::tau;

begin
if args(0) <> 1 then

error(message("symbolic:numlib:IncorrectNumberOfArguments"))
else

if not testtype(a, Type::Numeric) then
return(procname(args()))

else
if domtype(a) <> DOM_INT then

error(message("symbolic:numlib:ArgumentInteger"))
end_if

end_if
end_if;
numlib::numdivisors(a)

end_proc

MuPAD also includes kernel functions written in C++. You cannot access
the source code of these functions.

3-18

Differences Between MATLAB® and MuPAD® Syntax

Differences Between MATLAB and MuPAD Syntax
There are several differences between MATLAB and MuPAD syntax. Be
aware of which interface you are using in order to use the correct syntax:

• Use MATLAB syntax in the MATLAB workspace, except for the functions
evalin(symengine,...) and feval(symengine,...), which use MuPAD
syntax.

• Use MuPAD syntax in MuPAD notebooks.

You must define MATLAB variables before using them. However, every
expression entered in a MuPAD notebook is assumed to be a combination of
symbolic variables unless otherwise defined. This means that you must be
especially careful when working in MuPAD notebooks, since fewer of your
typos cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they
differ in MATLAB and MuPAD syntax.

Common Tasks in MATLAB and MuPAD Syntax

Task MATLAB Syntax MuPAD Syntax

Assignment = :=

List variables whos anames(All, User)

Numerical value
of expression

double(expression) float(expression)

Suppress output ; :

Enter matrix [x11,x12,x13;
x21,x22,x23]

matrix([[x11,x12,x13],
[x21,x22,x23]])

{a,b,c} cell array set

Auto-completion Tab Ctrl+space bar

Equality,
inequality
comparison

==, ~= =, <>

3-19

3 MuPAD® in Symbolic Math Toolbox™

The next table lists differences between MATLAB expressions and MuPAD
expressions.

MATLAB vs. MuPAD Expressions

MATLAB Expression MuPAD Expression

Inf infinity

pi PI

i I

NaN undefined

fix trunc

asin arcsin

acos arccos

atan arctan

asinh arcsinh

acosh arccosh

atanh arctanh

acsc arccsc

asec arcsec

acot arccot

acsch arccsch

asech arcsech

acoth arccoth

besselj besselJ

bessely besselY

besseli besselI

besselk besselK

lambertw lambertW

sinint Si

3-20

Differences Between MATLAB® and MuPAD® Syntax

MATLAB vs. MuPAD Expressions (Continued)

MATLAB Expression MuPAD Expression

cosint Ci

eulergamma EULER

conj conjugate

catalan CATALAN

The MuPAD definition of exponential integral differs from the Symbolic Math
Toolbox counterpart.

Symbolic Math Toolbox
Definition

MuPAD Definition

Exponential
integral

expint(x) = –Ei(–x) =

exp()− > =
∞

∫ t
t

dt x
x

 for 0

Ei(1, x).

Ei for () .x
e
t

dt x
tx

= <
−∞
∫ 0

Ei(,)
exp()

.n x
xt

t
dt

n
= −∞

∫
1

The definitions of Ei extend
to the complex plane, with
a branch cut along the
negative real axis.

3-21

3 MuPAD® in Symbolic Math Toolbox™

Copy Variables and Expressions Between MATLAB and
MuPAD

You can copy a variable from a MuPAD notebook to a variable in the MATLAB
workspace using a MATLAB command. Similarly, you can copy a variable
or symbolic expression in the MATLAB workspace to a variable in a MuPAD
notebook using a MATLAB command. To do either assignment, you need to
know the handle to the MuPAD notebook you want to address.

The only way to assign variables between a MuPAD notebook and the
MATLAB workspace is to open the notebook using the following syntax:

nb = mupad;

You can use any variable name for the handle nb. To open an existing
notebook file, use the following syntax:

nb = mupad(file_name);

Here file_name must be a full path unless the notebook is in the current
folder. The handle nb is used only for communication between the MATLAB
workspace and the MuPAD notebook.

• To copy a symbolic variable in the MATLAB workspace to a variable in
the MuPAD notebook engine with the same name, enter this command in
the MATLAB Command Window:

setVar(notebook_handle,variable)

For example, if nb is the handle to the notebook and z is the variable, enter:

setVar(nb,z)

There is no indication in the MuPAD notebook that variable z exists.
To check that it exists, enter the command anames(All, User) in the
notebook.

• To assign a symbolic expression to a variable in a MuPAD notebook, enter:

setVar(notebook_handle,'variable',expression)

3-22

Copy Variables and Expressions Between MATLAB® and MuPAD®

at the MATLAB command line. For example, if nb is the handle to the
notebook, exp(x) - sin(x) is the expression, and z is the variable, enter:

syms x
setVar(nb,'z',exp(x) - sin(x))

For this type of assignment, x must be a symbolic variable in the MATLAB
workspace.

Again, there is no indication in the MuPAD notebook that variable z exists.
Check that it exists by entering the command anames(All, User) in the
notebook.

• To copy a symbolic variable in a MuPAD notebook to a variable in the
MATLAB workspace, enter in the MATLAB Command Window:

MATLABvar = getVar(notebook_handle,'variable');

For example, if nb is the handle to the notebook, z is the variable in the
MuPAD notebook, and u is the variable in the MATLAB workspace, enter:

u = getVar(nb,'z')

Communication between the MATLAB workspace and the MuPAD
notebook occurs in the notebook’s engine. Therefore, variable z must be
synchronized into the notebook’s MuPAD engine before using getVar, and
not merely displayed in the notebook. If you try to use getVar to copy
an undefined variable z in the MuPAD engine, the resulting MATLAB
variable u is empty. For details, see “Synchronize Notebook and its Engine”
on page 3-10.

Tip Do all copying and assignments from the MATLAB workspace, not from
a MuPAD notebook.

3-23

3 MuPAD® in Symbolic Math Toolbox™

�� !"��������#

�� !"
�������#��������!�%!&�$��#�'���

*�	�+
��	�+

���,��-��.�*/

��	����,��-��.�0*1/

2�����!�%!&.�,��������
���������'��3������3�����
���� !"��������#��������

������
��������

�����

Copy and Paste Using the System Clipboard
You can also copy and paste between notebooks and the MATLAB workspace
using standard editing commands. If you copy a result in a MuPAD notebook
to the system clipboard, you might get the text associated with the expression,
or a picture, depending on your operating system and application support.

For example, consider this MuPAD expression:

Select the output with the mouse and copy it to the clipboard:

Paste this into the MATLAB workspace. The result is text:

exp(x)/(x^2 + 1)

3-24

Copy Variables and Expressions Between MATLAB® and MuPAD®

If you paste it into Microsoft® WordPad on a Windows® system, the result
is a picture.

3-25

3 MuPAD® in Symbolic Math Toolbox™

Reserved Variable and Function Names
Both MATLAB and MuPAD have their own reserved keywords, such as
function names, special values, and names of mathematical constants. Using
reserved keywords as variable or function names can result in errors. If
a variable name or a function name is a reserved keyword in one or both
interfaces, you can get errors or incorrect results. If you work in one interface
and a name is a reserved keyword in another interface, the error and warning
messages are produced by the interface you work in. These messages can
specify the cause of the problem incorrectly.

Tip The best approach is to avoid using reserved keywords as variable or
function names, especially if you use both interfaces.

Conflicts Caused by MuPAD Function Names
In MuPAD, function names are protected. Normally, the system does not let
you redefine a standard function or use its name as a variable. (To be able
to modify a standard MuPAD function you must first remove its protection.)
Even when you work in the MATLAB Command Window, the MuPAD
engine handles symbolic computations. Therefore, MuPAD function names
are reserved keywords in this case. Using a MuPAD function name while
performing symbolic computations in the MATLAB Command Window can
lead to incorrect results:

solve('D - 10')

The warning message does not indicate the real cause of the problem:

Warning: 1 equations in 0 variables.
Warning: Explicit solution could not be found.
> In solve at 81

ans =
[empty sym]

To fix this issue, use a variable name that is not a reserved keyword:

solve('x - 10')

3-26

Reserved Variable and Function Names

ans =
10

Alternatively, use the syms function to declare D as a symbolic variable. Then
call the symbolic solver without using quotes:

syms D;
solve(D - 10)

In this case, the toolbox replaces D with some other variable name before
passing the expression to the MuPAD engine:

ans =
10

To list all MuPAD function names, enter this command in the MATLAB
Command Window:

evalin(symengine, 'anames()')

If you work in a MuPAD notebook, enter:

anames()

Conflicts Caused by Syntax Conversions
Many mathematical functions, constants, and special values use different
syntaxes in MATLAB and MuPAD. See the table MATLAB® vs. MuPAD®

Expressions on page 3-20 for these expressions. When you use such functions,
constants, or special values in the MATLAB Command Window, the toolbox
internally converts the original MATLAB expression to the corresponding
MuPAD expression and passes the converted expression to the MuPAD
engine. When the toolbox gets the results of computations, it converts the
MuPAD expressions in these results to the MATLAB expressions.

Suppose you write MuPAD code that introduces a new alias. For example,
this code defines that pow2 computes 2 to the power of x:

alias(pow2(x)=2^(x)):

Save this code in the myProcPow.mu program file in the C:/MuPAD folder.
Before you can use this code, you must read the program file into the symbolic
engine. Typically, you can read a program file into the symbolic engine by

3-27

3 MuPAD® in Symbolic Math Toolbox™

using read. This approach does not work for code defining aliases because
read ignores them. If your code defines aliases, use feval to call the
MuPAD read function. For example, enter these commands in the MATLAB
Command Window:

eng=symengine;
eng.feval('read',' "C:/MuPAD/myProcPow.mu" ');

Now you can use pow2 to compute 2x. For example, compute 22:

feval(eng, 'pow2', '2')

ans =
4

Now suppose you want to introduce the same alias and the following
procedure in one program file:

alias(pow2(x)=2^(x)):

mySum := proc(n)
local i, s;
begin

s := 0:
for i from 1 to n do

s := s + s/i + i
end_for:
return(s);

end_proc:

Save this code in the myProcSum.mu program file in the C:/MuPAD folder.
Again, you must read the program file into the symbolic engine, and you
cannot use read because the code defines an alias. Enter these commands
in the MATLAB Command Window:

eng=symengine;
eng.feval('read',' "C:/MuPAD/myProcSum.mu" ');

Error using mupadengine/feval (line 157)
MuPAD error: Error: Identifier expected (check aliases). [proc]

Evaluating: read

3-28

Reserved Variable and Function Names

Reading File: C:/MuPAD/myProcSum.mu

In this example, using the variable i causes the problem. The toolbox treats
i as the imaginary unit, and therefore, converts it to I before passing the
procedure to the MuPAD engine. Then the toolbox passes the converted code,
with all instances of i replaced by I, to the MuPAD engine. This causes an
error because I is protected, and the code tries to overwrite its value.

Reading the myProcSum procedure in a MuPAD notebook does not cause an
error.

3-29

3 MuPAD® in Symbolic Math Toolbox™

Open MuPAD Interfaces from MATLAB
You can open an existing MuPAD notebook, a program file, or a graphic file
(.xvc or .xvz) by double-clicking the file name. The system opens the file
in the appropriate interface. Alternatively, use the mupad function or the
MATLAB open function in the MATLAB Command Window and specify the
path to the file:

mupad('H:\Documents\Notes\myNotebook.mn')

open('H:\Documents\Notes\myNotebook.mn')

If you perform computations in both interfaces, do not forget to use handles
to notebooks. The toolbox uses this handle for communication between the
MATLAB workspace and the MuPAD notebook. If you use the MATLAB
Command Window only to open a notebook, and then perform all your
computations in that notebook, you can skip using a handle. Also, you can
skip using a handle when opening program files and graphic files.

Symbolic Math Toolbox also provides these functions for opening MuPAD files
in the interfaces with which these files are associated:

• openmn opens a notebook in the notebook interface.

• openmu opens a program file with the extension .mu in the MATLAB Editor.

• openxvc opens an XVC graphic file in the MuPAD Graphics window.

• openxvz opens an XVZ graphic file in the MuPAD Graphics window.

These functions accomplish the same task as the mupad function. The system
calls these functions when you double-click the file name.

You also can use the Welcome to MuPAD dialog box to open existing files as
well as create new empty notebooks and program files. To open this dialog
box, type mupadwelcome in the MATLAB Command Window. For details, see
“Create, Open, and Save MuPAD Notebooks” on page 3-3.

After opening any MuPAD interface, you can use the main menu or the
toolbar in that interface to open other interfaces or additional files.

3-30

Open MuPAD® Interfaces from MATLAB®

Note You cannot access the MuPAD Debugger from the MATLAB Command
Window.

For information about the Debugger, see “Edit and Debug MuPAD Code”
on page 3-12.

3-31

3 MuPAD® in Symbolic Math Toolbox™

Call Built-In MuPAD Functions from MATLAB Command
Window

To access MuPAD functions and procedures at the MATLAB command line,
use evalin(symengine,...) or feval(symengine,...). These functions are
designed to work like the existing MATLAB evalin and feval functions.

evalin
For evalin, the syntax is

y = evalin(symengine,'MuPAD_Expression');

Use evalin when you want to perform computations in the MuPAD
language, while working in the MATLAB workspace. For example, to make a
three-element symbolic vector of the sin(kx) function, k = 1 to 3, enter:

y = evalin(symengine,'[sin(k*x) $ k = 1..3]')

y =
[sin(x), sin(2*x), sin(3*x)]

feval
For evaluating a MuPAD function, you can also use the feval function. feval
has a different syntax than evalin, so it can be simpler to use. The syntax is:

y = feval(symengine,'MuPAD_Function',x1,...,xn);

MuPAD_Function represents the name of a MuPAD function. The arguments
x1,...,xn must be symbolic variables, numbers, or strings. For example, to
find the tenth element in the Fibonacci sequence, enter:

z = feval(symengine,'numlib::fibonacci',10)

z =
55

The next example compares the use of a symbolic solution of an equation to
the solution returned by the MuPAD numeric fsolve function near the point
x = 3. The symbolic solver returns these results:

3-32

Call Built-In MuPAD® Functions from MATLAB® Command Window

syms x
f = sin(x^2);
solve(f)

ans =
0
0

The numeric solver fsolve returns this result:

feval(symengine, 'numeric::fsolve',f,'x=3')

ans =
x == 3.0699801238394654654386548746678

As you might expect, the answer is the numerical value of 3 . The setting
of MATLAB format does not affect the display; it is the full returned value
from the MuPAD 'numeric::fsolve' function.

evalin vs. feval
The evalin(symengine,...) function causes the MuPAD engine to evaluate
a string. Since the MuPAD engine workspace is generally empty, expressions
returned by evalin(symengine,...) are not simplified or evaluated
according to their definitions in the MATLAB workspace. For example:

syms x
y = x^2;
evalin(symengine, 'cos(y)')

ans =
cos(y)

Variable y is not expressed in terms of x because y is unknown to the MuPAD
engine.

In contrast, feval(symengine,...) can pass symbolic variables that exist
in the MATLAB workspace, and these variables are evaluated before being
processed in the MuPAD engine. For example:

3-33

3 MuPAD® in Symbolic Math Toolbox™

syms x
y = x^2;
feval(symengine,'cos',y)

ans =
cos(x^2)

Floating-Point Arguments of evalin and feval
By default, MuPAD performs all computations in an exact form. When you
call the evalin or feval function with floating-point numbers as arguments,
the toolbox converts these arguments to rational numbers before passing
them to MuPAD. For example, when you calculate the incomplete gamma
function, the result is the following symbolic expression:

y = feval(symengine,'igamma', 0.1, 2.5)

y =
igamma(1/10, 5/2)

To approximate the result numerically with double precision, use the double
function:

format long;
double(y)

ans =
0.028005841168289

Alternatively, use quotes to prevent the conversion of floating-point
arguments to rational numbers. (The toolbox treats arguments enclosed in
quotes as strings.) When MuPAD performs arithmetic operations on numbers
involving at least one floating-point number, it automatically switches to
numeric computations and returns a floating-point result:

feval(symengine,'igamma', '0.1', 2.5)

ans =
0.028005841168289177028337498391181

For further computations, set the format for displaying outputs back to short:

format short;

3-34

Computations in MATLAB® Command Window vs. MuPAD® Notebook Interface

Computations in MATLAB Command Window vs. MuPAD
Notebook Interface

When computing with Symbolic Math Toolbox, you can choose to work in
the MATLAB Command Window or in the MuPAD notebook interface. The
MuPAD engine that performs all symbolic computations is the same for both
interfaces. The choice of the interface mostly depends on your preferences.

Working in the MATLAB Command Window lets you perform all symbolic
computations using the familiar MATLAB language. The toolbox contains
hundreds of MATLAB symbolic functions for common tasks, such as
differentiation, integration, simplification, transforms, and equation solving.
If your task requires a few specialized symbolic functions not available
directly from this interface, you can use evalin or feval to call MuPAD
functions. See “Call Built-In MuPAD Functions from MATLAB Command
Window” on page 3-32.

Working in the MATLAB Command Window is recommended if you use other
toolboxes or MATLAB as a primary tool for your current task and only want
to embed a few symbolic computations in your code.

Working in the MuPAD notebook interface requires you to use the MuPAD
language, which is optimized for symbolic computations. In addition to solving
common mathematical problems, MuPAD functions cover specialized areas,
such as number theory and combinatorics. Also, for some computations the
performance is better in the MuPAD notebook interface than in the MATLAB
Command Window. The reason is that the engine returns the results in the
MuPAD language. To display them in the MATLAB Command Window, the
toolbox translates the results to the MATLAB language.

Working in the MuPAD notebook interface is recommended when your task
mainly consists of symbolic computations. It is also recommended if you want
to document your work and results, for example, embed graphics, animations,
and descriptive text with your calculations. Symbolic results computed in the
MuPAD notebook interface can be accessed from the MATLAB Command
Window, which helps you integrate symbolic results into larger MATLAB
applications.

3-35

3 MuPAD® in Symbolic Math Toolbox™

Learning the MuPAD language and using the MuPAD notebook interface for
your symbolic computations provides the following benefits.

Results Displayed in Typeset Math
By default, the MuPAD notebook interface displays results in typeset math
making them look very similar to what you see in mathematical books. In
addition, the notebook interface

• Uses standard mathematical notations in output expressions.

• Uses abbreviations to make a long output expression with common
subexpressions shorter and easier to read. You can disable abbreviations.

• Wraps long output expressions, including long numbers, fractions and
matrices, to make them fit the page. If you resize the notebook window,
MuPAD automatically adjusts outputs. You can disable wrapping of output
expressions.

Alternatively, you can display pretty-printed outputs similar to those that you
get in the MATLAB Command Window when you use pretty. You can also
display outputs as plain text. For details, see “Use Different Output Modes”.

In a MuPAD notebook, you can copy or move output expressions, including
expressions in typeset math, to any input or text region within the notebook,
or to another notebook. If you copy or move an output expression to an input
region, the expression appears as valid MuPAD input.

Graphics and Animations
The MuPAD notebook interface provides very extensive graphic capabilities
to help you visualize your problem and display results. Here you can create a
wide variety of plots, including:

• 2-D and 3-D plots in Cartesian, polar, and spherical coordinates

• Plots of continuous and piecewise functions and functions with singularities

• Plots of discrete data sets

• Surfaces and volumes by using predefined functions

• Turtle graphics and Lindenmayer systems

3-36

Computations in MATLAB® Command Window vs. MuPAD® Notebook Interface

• Animated 2-D and 3-D plots

Graphics in the MuPAD notebook interface is interactive. You can explore
and edit plots, for example:

• Change colors, fonts, legends, axes appearance, grid lines, tick marks,
line, and marker styles.

• Zoom and rotate plots without reevaluating them.

• Display coordinates of any point on the plot.

After you create and customize a plot, you can export it to various vector and
bitmap file formats, including EPS, SVG, PDF, PNG, GIF, BMP, TIFF, and
JPEG. The set of the file formats available for exporting graphics from a
MuPAD notebook can be limited by your operating system.

You can export animations as AVI files or as sequences of static images.

More Functionality in Specialized Mathematical Areas
While both MATLAB and MuPAD interfaces provide functions for performing
common mathematical tasks, the notebook interface also provides functions
that cover many specialized areas. For example, MuPAD libraries support
computations in the following areas:

• Combinatorics

• Graph theory

• Gröbner bases

• Linear optimization

• Polynomial algebra

• Number theory

• Statistics

MuPAD libraries also provide large collections of functions for working with
ordinary differential equations, integral and discrete transforms, linear
algebra, and more.

3-37

3 MuPAD® in Symbolic Math Toolbox™

More Options for Common Symbolic Functions
Most functions for performing common mathematical computations are
available in both MATLAB and MuPAD interfaces. For example, you can
solve equations and systems of equations using solve, simplify expressions
using simplify, compute integrals using int, and compute limits using
limit. Note that although the function names are the same, the syntax of the
function calls depends on the interface that you use.

Results of symbolic computations can be very long and complicated, especially
because the toolbox assumes all values to be complex by default. For many
symbolic functions you can use additional parameters and options to help you
limit the number and complexity and also to control the form of returned
results. For example, solve accepts the Real option that lets you restrict
all symbolic parameters of an equation to real numbers. It also accepts the
VectorFormat option that you can use to get solutions of a system as a set of
vectors.

Typically, the functions available in the notebook interface accept more
options than the analogous functions in the MATLAB Command Window. For
example, in the notebook interface you can use the VectorFormat option. This
option is not directly available for the solve function called in the MATLAB
Command Window.

Possibility to Expand Existing Functionality
The MuPAD programming language supports multiple programming styles,
including imperative, functional, and object-oriented programming. The
system includes a few basic functions written in C++, but the majority
of the MuPAD built-in functionality is implemented as library functions
written in the MuPAD language. You can extend the built-in functionality
by writing custom symbolic functions and libraries, defining new function
environments, data types, and operations on them in the MuPAD language.
MuPAD implements data types as domains (classes). Domains with similar
mathematical structure typically belong to a category. Domains and
categories allow you to use the concepts of inheritance, overloading methods
and operators. The language also uses axioms to state properties of domains
and categories.

“Object-Oriented Programming” contains information to get you started with
object-oriented programming in MuPAD.

3-38

Use Your Own MuPAD® Procedures

Use Your Own MuPAD Procedures

Write MuPAD Procedures
A MuPAD procedure is a text file that you can write in any text editor . The
recommended practice is to use the MATLAB Editor.

To define a procedure, use the proc function. Enclose the code in the begin
and end_proc functions:

myProc:= proc(n)
begin

if n = 1 or n = 0 then
1

else
n * myProc(n - 1)

end_if;
end_proc:

By default, a MuPAD procedure returns the result of the last executed
command. You can force a procedure to return another result by using return.
In both cases, a procedure returns only one result. To get multiple results from
a procedure, use the print function or data structures inside the procedure.

• If you just want to display the results, and do not need to use them in
further computations, use the print function. With print, your procedure
still returns one result, but prints intermediate results on screen. For
example, this procedure prints the value of its argument in each call:

myProcPrint:= proc(n)
begin

print(n);
if n = 0 or n = 1 then

return(1);
end_if;
n * myProcPrint(n - 1);

end_proc:

• If you want to use multiple results of a procedure, use ordered data
structures, such as lists or matrices as return values. In this case, the

3-39

3 MuPAD® in Symbolic Math Toolbox™

result of the last executed command is technically one object, but it can
contain more than one value. For example, this procedure returns the
list of two entries:

myProcSort:= proc(a, b)
begin

if a < b then
[a, b]

else
[b, a]

end_if;
end_proc:

Avoid using unordered data structures, such as sequences and sets, to
return multiple results of a procedure. The order of the entries in these
structures can change unpredictably.

When you save the procedure, it is recommended to use the extension .mu.
For details, see “Notebook Files and Program Files” on page 3-16. The name
of the file can differ from the name of the procedure. Also, you can save
multiple procedures in one file.

Steps to Take Before Calling a Procedure
To be able to call a procedure, you must first execute it in a notebook. If you
write a procedure in the same notebook, simply evaluate the input region
that contains the procedure. If you write a procedure in a separate file, you
must read the procedure into a notebook. Reading a procedure means finding
and executing the procedure.

Read MuPAD Procedures
If you work in the MuPAD notebook interface and create a separate program
file that contains a procedure, use one of the following methods to execute the
procedure in a notebook. The first approach is to select Notebook > Read
Commands from the main menu.

Alternatively, you can use the read function. The function call
read(filename) searches for the program file in this order:

1 Folders specified by the environment variable READPATH

3-40

Use Your Own MuPAD® Procedures

2 filename regarded as an absolute path

3 Current folder (depends on the operating system)

4 Folders specified by the environment variable LIBPATH

If you want to call the procedure from the MATLAB Command Window, you
still need to execute that procedure before calling it. See “Call Your Own
MuPAD Procedures” on page 3-41.

Use Startup Commands and Scripts
Alternatively, you can add a MuPAD procedure to startup commands of
a particular notebook. This method lets you execute the procedure every
time you start a notebook engine. Startup commands are executed silently,
without any visible outputs in the notebook. You can copy the procedure to
the dialog box that specifies startup commands or attach the procedure as a
startup script. For information, see “Hide Code Lines”.

Call Your Own MuPAD Procedures
You can extend the functionality available in the toolbox by writing your own
procedures in the MuPAD language. This section explains how to call such
procedures at the MATLAB Command Window.

Suppose you wrote the myProc procedure that computes the factorial of a
nonnegative integer.

3-41

3 MuPAD® in Symbolic Math Toolbox™

Save the procedure as a file with the extension .mu. For example, save the
procedure as myProcedure.mu in the folder C:/MuPAD.

Return to the MATLAB Command Window. Before calling the procedure at
the MATLAB command line, enter:

read(symengine, 'C:/MuPAD/myProcedure.mu');

The read command reads and executes the myProcedure.mu file in MuPAD.
After that, you can call the myProc procedure with any valid parameter. For
example, compute the factorial of 15:

feval(symengine, 'myProc', 15)

ans =
1307674368000

3-42

Clear Assumptions and Reset the Symbolic Engine

Clear Assumptions and Reset the Symbolic Engine
The symbolic engine workspace associated with the MATLAB workspace
is usually empty. The MATLAB workspace tracks the values of symbolic
variables, and passes them to the symbolic engine for evaluation as necessary.
However, the symbolic engine workspace contains all assumptions you make
about symbolic variables, such as whether a variable is real, positive, integer,
greater or less than some value, and so on. These assumptions can affect
solutions to equations, simplifications, and transformations, as explained in
“Effects of Assumptions on Computations” on page 3-45.

Note These commands

syms x
x = sym('x');
clear x

clear any existing value of x in the MATLAB workspace, but do not clear
assumptions about x in the symbolic engine workspace.

If you make an assumption about the nature of a variable, for example,
using the commands

syms x
assume(x,'real')

or

syms x
assume(x > 0)

then clearing the variable x from the MATLAB workspace does not clear the
assumption from the symbolic engine workspace. To clear the assumption,
enter the command

syms x clear

For details, see “Check Assumptions Set On Variables” on page 3-44 and
“Effects of Assumptions on Computations” on page 3-45.

3-43

3 MuPAD® in Symbolic Math Toolbox™

If you reset the symbolic engine by entering the command

reset(symengine)

MATLAB no longer recognizes any symbolic variables that exist in the
MATLAB workspace. Clear the variables with the clear command, or renew
them with the syms or sym command.

This example shows how the MATLAB workspace and the symbolic engine
workspace respond to a sequence of commands.

Step Command MATLAB
Workspace

MuPAD Engine
Workspace

1 syms x positive
or
syms x;
assume(x > 0)

x x > 0

2 clear x empty x > 0

3 syms x x x > 0

4 syms x clear x empty

Check Assumptions Set On Variables
To check whether a variable, say x, has any assumptions in the symbolic
engine workspace associated with the MATLAB workspace, use the
assumptions function in the MATLAB Command Window:

assumptions(x)

If the function returns an empty symbolic object, there are no additional
assumptions on the variable. (The default assumption is that x can be any
complex number.) Otherwise, there are additional assumptions on the value
of that variable.

For example, while declaring the symbolic variable x make an assumption
that the value of this variable is a real number:

syms x real;
assumptions(x)

3-44

Clear Assumptions and Reset the Symbolic Engine

ans =
x in R_

Another way to set an assumption is to use the assume function:

syms z;
assume(z ~= 0);
assumptions(z)

ans =
z ~= 0

To see assumptions set on all variables in the MATLAB workspace, use
assumptions without input arguments:

assumptions

ans =
[x in R_, z ~= 0]

Clear assumptions set on x and z:

syms x z clear;

assumptions

ans =
[empty sym]

Effects of Assumptions on Computations
Assumptions can affect many computations, including results returned by
the solve function. They also can affect the results of simplifications. For
example, solve this equation without any additional assumptions on its
variable:

syms x
solve(x^4 == 1, x)

ans =
1

-1
i

3-45

3 MuPAD® in Symbolic Math Toolbox™

-i

Now solve the same equation assuming that x is real:

syms x real
solve(x^4 == 1, x)

ans =
1

-1

Use the assumeAlso function to add the assumption that x is also positive:

assumeAlso(x > 0);
solve(x^4 == 1, x)

ans =
1

Clearing x does not change the underlying assumptions that x is real and
positive:

clear x
syms x
assumptions(x)
solve(x^4 == 1, x)

ans =
[0 < x, x in R_]

ans =
1

Clearing x with syms x clear clears the assumption:

syms x clear
assumptions(x)

ans =
[empty sym]

3-46

Clear Assumptions and Reset the Symbolic Engine

Tip syms x clear clears the assumptions and the value of x. To clear the
assumptions only, use sym('x','clear').

3-47

3 MuPAD® in Symbolic Math Toolbox™

Create MATLAB Functions from MuPAD Expressions
Symbolic Math Toolbox lets you create a MATLAB function from a symbolic
expression. A MATLAB function created from a symbolic expression accepts
numeric arguments and evaluates the expression applied to the arguments.
You can generate a function handle or a file that contains a MATLAB
function. The generated file is available for use in any MATLAB calculation,
independent of a license for Symbolic Math Toolbox functions.

If you work in the MATLAB Command Window, see “Generate MATLAB
Functions” on page 2-131.

When you use the MuPAD notebook interface, all your symbolic expressions
are written in the MuPAD language. To be able to create a MATLAB function
from such expressions, you must convert it to the MATLAB language. There
are two approaches for converting a MuPAD expression to the MATLAB
language:

• Assign the MuPAD expression to a variable, and copy that variable from
a notebook to the MATLAB workspace. This approach lets you create a
function handle or a file that contains a MATLAB function. It also requires
using a handle to the notebook.

• Generate MATLAB code from the MuPAD expression in a notebook. This
approach limits your options to creating a file. You can skip creating a
handle to the notebook.

The generated MATLAB function can depend on the approach that you chose.
For example, code can be optimized differently or not optimized at all.

Suppose you want to create a MATLAB function from a symbolic matrix that
converts spherical coordinates of any point to its Cartesian coordinates. First,
open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;

In this notebook, create the symbolic matrix S that converts spherical
coordinates to Cartesian coordinates:

x := r*sin(a)*cos(b):
y := r*sin(a)*sin(b):

3-48

Create MATLAB® Functions from MuPAD® Expressions

z := r*cos(b):
S := matrix([x, y, z]):

Now convert matrix S to the MATLAB language. Choose the best approach
for your task.

Copy MuPAD Variables to the MATLAB Workspace
If your notebook has a handle, like notebook_handle in this example, you can
copy variables from that notebook to the MATLAB workspace with the getVar
function, and then create a MATLAB function. For example, to convert the
symbolic matrix S to a MATLAB function:

1 Copy variable S to the MATLAB workspace:

S = getVar(notebook_handle,'S')

Variable S and its value (the symbolic matrix) appear in the MATLAB
workspace and in the MATLAB Command Window:

S =
r*cos(b)*sin(a)
r*sin(a)*sin(b)

r*cos(b)

2 Use matlabFunction to create a MATLAB function from the symbolic
matrix. To generate a MATLAB function handle, use matlabFunction
without additional parameters:

h = matlabFunction(S)

h =
@(a,b,r)[r.*cos(b).*sin(a);r.*sin(a).*sin(b);r.*cos(b)]

To generate a file containing the MATLAB function, use the parameter
file and specify the path to the file and its name. For example, save the
MATLAB function to the file cartesian.m in the current folder:

S = matlabFunction(S,'file', 'cartesian.m');

You can open and edit cartesian.m in the MATLAB Editor.

3-49

3 MuPAD® in Symbolic Math Toolbox™

Generate MATLAB Code in a MuPAD Notebook
To generate the MATLAB code from a MuPAD expression within the MuPAD
notebook, use the generate::MATLAB function. Then, you can create a new
file that contains an empty MATLAB function, copy the code, and paste it
there. Alternatively, you can create a file with a MATLAB formatted string
representing a MuPAD expression, and then add appropriate syntax to create
a valid MATLAB function.

1 In the MuPAD notebook interface, use the generate::MATLAB function to
generate MATLAB code from the MuPAD expression. Instead of printing
the result on screen, use the fprint function to create a file and write the
generated code to that file:

fprint(Unquoted, Text, "cartesian.m", generate::MATLAB(S)):

Note If the file with this name already exists, fprint replaces the
contents of this file with the converted expression.

2 Open cartesian.m. It contains a MATLAB formatted string representing
matrix S:

S = zeros(3,1);
S(1,1) = r*cos(b)*sin(a);
S(2,1) = r*sin(a)*sin(b);
S(3,1) = r*cos(b);

3 To convert this file to a valid MATLAB function, add the keywords
function and end, the function name (must match the file name), input
and output arguments, and comments:

3-50

Create MATLAB® Functions from MuPAD® Expressions

3-51

3 MuPAD® in Symbolic Math Toolbox™

Create MATLAB Function Blocks from MuPAD Expressions
Symbolic Math Toolbox lets you create a MATLAB function block from a
symbolic expression. The generated block is available for use in Simulink
models, whether or not the computer that runs the simulations has a license
for Symbolic Math Toolbox.

If you work in the MATLAB Command Window, see “Generate MATLAB
Function Blocks” on page 2-136.

The MuPAD notebook interface does not provide a function for generating a
block. Therefore, to be able to create a block from the MuPAD expression:

1 In a MuPAD notebook, assign that expression to a variable.

2 Use the getVar function to copy that variable from a notebook to the
MATLAB workspace.

For details about these steps, see “Copy MuPAD Variables to the MATLAB
Workspace” on page 3-49.

When the expression that you want to use for creating a MATLAB function
block appears in the MATLAB workspace, use the matlabFunctionBlock
function to create a block from that expression.

For example, open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;

In this notebook, create the following symbolic expression:

r := sqrt(x^2 + y^2)

Use getVar to copy variable r to the MATLAB workspace:

r = getVar(notebook_handle,'r')

Variable r and its value appear in the MATLAB workspace and in the
MATLAB Command Window:

r =

3-52

Create MATLAB® Function Blocks from MuPAD® Expressions

(x^2 + y^2)^(1/2)

Before generating a MATLAB Function block from the expression, create
an empty model or open an existing one. For example, create and open the
new model my_system:

new_system('my_system');
open_system('my_system')

Since the variable and its value are in the MATLAB workspace, you can use
matlabFunctionBlock to generate the block my_block:

matlabFunctionBlock('my_system/my_block', r)

You can open and edit the block in the MATLAB Editor. To open the block,
double-click it:

function r = my_block(x,y)
%#codegen

r = sqrt(x.^2+y.^2);

3-53

3 MuPAD® in Symbolic Math Toolbox™

Create Simscape Equations from MuPAD Expressions
Symbolic Math Toolbox lets you integrate symbolic computations into the
Simscape modeling workflow by using the results of these computations in
the Simscape equation section.

If you work in the MATLAB Command Window, see “Generate Simscape
Equations” on page 2-139.

If you work in the MuPAD notebook interface, you can:

• Assign the MuPAD expression to a variable, copy that variable from
a notebook to the MATLAB workspace, and use simscapeEquation to
generate the Simscape equation in the MATLAB Command Window.

• Generate the Simscape equation from the MuPAD expression in a notebook.

In both cases, to use the generated equation, you must manually copy the
equation and paste it to the equation section of the Simscape component file.

For example, follow these steps to generate a Simscape equation from the
solution of the ordinary differential equation computed in the notebook
interface:

1 Open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;

2 In this notebook, define the following equation:

s:= ode(y'(t) = y(t)^2, y(t)):

3 Decide whether you want to generate the Simscape equation in the MuPAD
notebook interface or in the MATLAB Command Window.

GenerateSimscape Equations in the MuPAD Notebook
Interface
To generate the Simscape equation in the same notebook, use
generate::Simscape. To display generated Simscape code on screen, use the

3-54

Create Simscape™ Equations from MuPAD® Expressions

print function. To remove quotes and expand special characters like line
breaks and tabs, use the printing option Unquoted:

print(Unquoted, generate::Simscape(s))

This command returns the Simscape equation that you can copy and paste to
the Simscape equation section:

-y^2+y.der == 0.0;

Generate Simscape Equations in the MATLAB
Command Window
To generate the Simscape equation in the MATLAB Command Window,
follow these steps:

1 Use getVar to copy variable s to the MATLAB workspace:

s = getVar(notebook_handle, 's')

Variable s and its value appear in the MATLAB workspace and in the
MATLAB Command Window:

s =
ode(D(y)(t) - y(t)^2, y(t))

2 Use simscapeEquation to generate the Simscape equation from s:

simscapeEquation(s)

You can copy and paste the generated equation to the Simscape equation
section. Do not copy the automatically generated variable ans and the equal
sign that follows it.

ans =
s == (-y^2+y.der == 0.0);

3-55

3 MuPAD® in Symbolic Math Toolbox™

3-56

4

Functions — Alphabetical
List

abs

Purpose Absolute value of real or complex value

Syntax abs(z)
abs(A)

Description abs(z) returns the absolute value of z. If z is complex, abs(z) returns
the complex modulus (magnitude) of z.

abs(A) returns the absolute value of each element of A. If A is complex,
abs(A) returns the complex modulus (magnitude) of each element of A.

Tips • Calling abs for a number that is not a symbolic object invokes the
MATLAB abs function.

Input
Arguments

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Complex Modulus

The absolute value of a complex number z = x + y*i is the value

z x y 2 2 . Here, x and y are real numbers. The absolute value of a
complex number is also called a complex modulus.

Examples Compute absolute values of these symbolic real numbers:

[abs(sym(1/2)), abs(sym(0)), abs(sym(pi) - 4)]

ans =
[1/2, 0, 4 - pi]

Compute the absolute values of each element of matrix A:

4-2

abs

A = sym([(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]);
abs(A)

ans =
[5^(1/2)/2, 25]
[2^(1/2), (pi*5^(1/2)*18^(1/2))/18]

Compute the absolute value of this expression assuming that the value
x is negative:

syms x
assume(x < 0)
abs(5*x^3)

ans =
-5*x^3

For further computations, clear the assumption:

syms x clear

See Also absangle | imag | real | sign

4-3

adjoint

Purpose Adjoint of symbolic square matrix

Syntax X = adjoint(A)

Description X = adjoint(A) returns the adjoint matrix X of A. The adjoint of a
matrix A is the matrix X, such that A*X = det(A)*eye(n) = X*A, where
n is the number of rows in A and eye(n) is the n-by-n identity matrix.

Input
Arguments

A

Symbolic square matrix.

Output
Arguments

X

Symbolic square matrix of the same size as A.

Definitions Adjoint of a Square Matrix

The adjoint of a square matrix A is the square matrix X, such that the
(i,j)-th entry of X is the (j,i)-th cofactor of A.

Cofactor of a Matrix

The (j,i)-th cofactor of A is defined as

a Aji
i j

ij 1 det

Aij is the submatrix of A obtained from A by removing the i-th row and
j-th column.

Examples Compute the adjoint of this symbolic matrix:

syms x y z
A = sym([x y z; 2 1 0; 1 0 2]);
X = adjoint(A)

X =
[2, -2*y, -z]

4-4

adjoint

[-4, 2*x - z, 2*z]
[-1, y, x - 2*y]

Verify that A*X = det(A)*eye(3), where eye(3) is the 3-by-3 identity
matrix:

isAlways(A*X == det(A)*eye(3))

ans =
1 1 1
1 1 1
1 1 1

Also verify that det(A)*eye(3) = X*A:

isAlways(det(A)*eye(3) == X*A)

ans =
1 1 1
1 1 1
1 1 1

Compute the inverse of this matrix by computing its adjoint and
determinant:

syms a b c d
A = [a b; c d];
invA = adjoint(A)/det(A)

invA =
[d/(a*d - b*c), -b/(a*d - b*c)]
[-c/(a*d - b*c), a/(a*d - b*c)]

Verify that invA is the inverse of A:

isAlways(invA == inv(A))

ans =

4-5

adjoint

1 1
1 1

See Also det | invlinalg::adjoint | rank

4-6

airy

Purpose Airy function

Syntax airy(x)
airy(0,x)
airy(1,x)
airy(2,x)
airy(3,x)

Description airy(x) returns the Airy function of the first kind, Ai(x).

airy(0,x) is equivalent to airy(x).

airy(1,x) returns the derivative of the Airy function of the first kind,
Ai′(x).

airy(2,x) returns the Airy function of the second kind, Bi(x).

airy(3,x) returns the derivative of the Airy function of the second
kind, Bi′(x).

Tips • Calling airy for a number that is not a symbolic object invokes the
MATLAB airy function.

Input
Arguments

x

Symbolic number, variable, expression, or vector or matrix of symbolic
numbers, variables, expressions.

Definitions Airy Functions

The Airy functions Ai(x) and Bi(x) are linearly independent solutions of
this differential equation:

2

2
0

y

x
xy

4-7

airy

Examples Solve this second-order differential equation. The solutions are the Airy
functions of the first and the second kind.

syms y(x)
dsolve(diff(y, 2) - x*y == 0)

ans =
C2*airy(0, x) + C3*airy(2, x)

Verify that the Airy function of the first kind is a valid solution of the
Airy differential equation:

syms x
simplify(diff(airy(0, x), x, 2) - x*airy(0, x)) == 0

ans =
1

Verify that the Airy function of the second kind is a valid solution of the
Airy differential equation:

simplify(diff(airy(2, x), x, 2) - x*airy(2, x)) == 0

ans =
1

Compute the Airy functions for these numbers. Because these numbers
are not symbolic objects, you get floating-point results.

[airy(1), airy(1, 3/2 + 2*i), airy(2, 2), airy(3, 1/101)]

ans =
0.1353 0.1641 + 0.1523i

3.2981 0.4483

4-8

airy

Compute the Airy functions for the numbers converted to symbolic
objects. For most symbolic (exact) numbers, airy returns unresolved
symbolic calls.

[airy(sym(1)), airy(1, sym(3/2 + 2*i)), airy(2,
sym(2)), airy(3, sym(1/101))]

ans =
[airy(0, 1), airy(1, 3/2 + 2*i), airy(2,
2), airy(3, 1/101)]

For symbolic variables and expressions, airy also returns unresolved
symbolic calls:

syms x y
[airy(x), airy(1, x^2), airy(2, x - y), airy(3, x*y)]

ans =
[airy(0, x), airy(1, x^2), airy(2, x - y), airy(3, x*y)]

Compute the Airy functions for x = 0. The Airy functions have special
values for this parameter.

airy(sym(0))

ans =
3^(1/3)/(3*gamma(2/3))

airy(1, sym(0))

ans =
-(3^(1/6)*gamma(2/3))/(2*pi)

airy(2, sym(0))

ans =
3^(5/6)/(3*gamma(2/3))

4-9

airy

airy(3, sym(0))

ans =
(3^(2/3)*gamma(2/3))/(2*pi)

If you do not use sym, you call the MATLAB airy function that returns
numeric approximations of these values:

[airy(0), airy(1, 0), airy(2, 0), airy(3, 0)]

ans =
0.3550 -0.2588 0.6149 0.4483

Differentiate the expressions involving the Airy functions:

syms x y
diff(airy(x^2))
diff(diff(airy(3, x^2 + x*y -y^2), x), y)

ans =
2*x*airy(1, x^2)

ans =
airy(2, x^2 + x*y - y^2)*(x^2 + x*y - y^2) +...
airy(2, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y) +...
airy(3, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y)*(x^2 + x*y - y^2)

Compute the Airy function of the first kind for the elements of matrix A:

syms x
A = [-1, 0; 0, x];
airy(A)

ans =
[airy(0, -1), 3^(1/3)/(3*gamma(2/3))]

4-10

airy

[3^(1/3)/(3*gamma(2/3)), airy(0, x)]

Plot the Airy function Ai(x) and its derivative Ai’(x):

syms x
ezplot(airy(x));
hold on

p = ezplot(airy(1,x));
set(p,'Color','red')

title('Airy function Ai and its first derivative')
hold off

4-11

airy

References Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also besseli | besselj | besselk | bessely | mfun | mfunlist

How To • “Special Functions of Applied Mathematics” on page 2-142

4-12

all

Purpose Test whether all equations and inequalities represented as elements
of symbolic array are valid

Syntax all(A)
all(A,dim)

Description all(A) tests whether all elements of A return logical 1 (true). If A is a
matrix, all tests all elements of each column. If A is a multidimensional
array, all tests all elements along one dimension.

all(A,dim) tests along the dimension of A specified by dim.

Tips • If A is an empty symbolic array, all(A) returns logical 1.

• If some elements of A are just numeric values (not equations or
inequalities), all converts these values as follows. All numeric
values except 0 become logical 1. The value 0 becomes logical 0.

• If A is a vector and all its elements return logical 1, all(A) returns
logical 1. If one or more elements are zero, all(A) returns logical 0.

• If A is a multidimensional array, all(A) treats the values along the
first dimension that is not equal to 1 (nonsingleton dimension) as
vectors, returning logical 1 or 0 for each vector.

Input
Arguments

A

Symbolic vector, matrix, or multidimensional symbolic array. For
example, it can be an array of symbolic equations, inequalities, or
logical expressions with symbolic subexpressions.

dim

Integer. For example, if A is a matrix, all(A,1) tests elements of each
column and returns a row vector of logical 1s and 0s. all(A,2) tests
elements of each row and returns a column vector of logical 1s and 0s.

4-13

all

Default: The first dimension that is not equal to 1 (non-singleton
dimension). For example, if A is a matrix, all(A) treats the
columns of A as vectors.

Examples Create vector V that contains the symbolic equation and inequalities
as its elements:

syms x
V = [x ~= x + 1, abs(x) >= 0, x == x];

Use all to test whether all of them are valid for all values of x:

all(V)

ans =
1

Create this matrix of symbolic equations and inequalities:

syms x
M = [x == x, x == abs(x); abs(x) >= 0, x ~= 2*x]

M =
[x == x, x == abs(x)]
[0 <= abs(x), x ~= 2*x]

Use all to test equations and inequalities of this matrix. By default,
all tests whether all elements of each column are valid for all possible
values of variables. If all equations and inequalities in the column are
valid (return logical 1), then all returns logical 1 for that column.
Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the
first column and 0 for the second column:

all(M)

ans =
1 0

4-14

all

Create this matrix of symbolic equations and inequalities:

syms x
M = [x == x, x == abs(x); abs(x) >= 0, x ~= 2*x]

M =
[x == x, x == abs(x)]
[0 <= abs(x), x ~= 2*x]

For matrices and multidimensional arrays, all can test all elements
along the specified dimension. To specify the dimension, use the second
argument of all. For example, to test all elements of each column of a
matrix, use the value 1 as the second argument:

all(M, 1)

ans =
1 0

To test all elements of each row, use the value 2 as the second argument:

all(M, 2)

ans =
0
1

Test whether all elements of this vector return logical 1s. Note that all
also converts all numeric values outside equations and inequalities to
logical 1s and 0s. The numeric value 0 becomes logical 0:

syms x
all([0, x == x])

ans =
0

4-15

all

All nonzero numeric values, including negative and complex values,
become logical 1s:

all([1, 2, -3, 4 + i, x == x])

ans =
1

See Also and | any | isAlways | logical | not | or | xor

4-16

and

Purpose Logical AND for symbolic expressions

Syntax A & B
and(A,B)

Description A & B represents the logical conjunction. A & B is true only when both
A and B are true.

and(A,B) is equivalent to A & B.

Tips • If you call simplify for a logical expression containing symbolic
subexpressions, you can get symbolic values TRUE or FALSE. These
values are not the same as logical 1 (true) and logical 0 (false). To
convert symbolic TRUE or FALSE to logical values, use logical.

Input
Arguments

A

Symbolic equation, inequality, or logical expression that contains
symbolic subexpressions.

B

Symbolic equation, inequality, or logical expression that contains
symbolic subexpressions.

Examples Combine these symbolic inequalities into the logical expression using &:

syms x y
xy = x >= 0 & y >= 0;

Set the corresponding assumptions on variables x and y using assume:

assume(xy)

Verify that the assumptions are set:

assumptions

ans =

4-17

and

[0 <= x, 0 <= y]

Combine two symbolic inequalities into the logical expression using &:

syms x
range = 0 < x & x < 1;

Replace variable x with these numeric values. If you replace x with
1/2, then both inequalities are valid. If you replace x with 10, both
inequalities are invalid. Note that subs does not evaluate these
inequalities to logical 1 or 0.

x1 = subs(range, x, 1/2)
x2 = subs(range, x, 10)

x1 =
0 < 1/2 and 1/2 < 1

x2 =
0 < 10 and 10 < 1

To evaluate these inequalities to logical 1 or 0, use logical or isAlways:

logical(x1)
isAlways(x2)

ans =
1

ans =
0

Note that simplify does not simplify these logical expressions to logical
1 or 0. Instead, they return symbolic values TRUE or FALSE.

s1 = simplify(x1)
s2 = simplify(x2)

4-18

and

s1 =
TRUE

s2 =
FALSE

Convert symbolic TRUE or FALSE to logical values using logical:

logical(s1)
logical(s2)

ans =
1

ans =
0

The recommended approach to define a range of values is using &.
Nevertheless, you can define a range of values of a variable as follows:

syms x
range = 0 < x < 1;

Now if you want to replace variable x with numeric values, use symbolic
numbers instead of MATLAB double-precision numbers. To create a
symbolic number, use sym

x1 = subs(range, x, sym(1/2))
x2 = subs(range, x, sym(10))

x1 =
(0 < 1/2) < 1

x2 =
(0 < 10) < 1

4-19

and

To evaluate these inequalities to logical 1 or 0, use isAlways. Note that
logical cannot resolve such inequalities.

isAlways(x1)
isAlways(x2)

ans =
1

ans =
0

See Also all | any | isAlways | logical | not | or | xor

4-20

angle

Purpose Symbolic polar angle

Syntax angle(Z)

Description angle(Z) computes the polar angle of the complex value Z.

Tips • Calling angle for numbers (or vectors or matrices of numbers) that
are not symbolic objects invokes the MATLAB angle function.

• If Z = 0, then angle(Z) returns 0.

Input
Arguments

Z

Symbolic number, variable, expression, function. The function also
accepts a vector or matrix of symbolic numbers, variables, expressions,
functions.

Examples Compute the polar angles of these complex numbers. Because these
numbers are not symbolic objects, you get floating-point results.

[angle(1 + i), angle(4 + pi*i), angle(inf + inf*i)]

ans =
0.7854 0.6658 0.7854

Compute the polar angles of these complex numbers which are
converted to symbolic objects:

[angle(sym(1) + i), angle(sym(4) + sym(pi)*i),
angle(inf + sym(inf)*i)]

ans =
[pi/4, atan(pi/4), angle(Inf + Inf*i)]

Compute the limits of these symbolic expressions:

4-21

angle

syms x;
limit(angle(x + x^2*i/(1 + x)), x, -inf)
limit(angle(x + x^2*i/(1 + x)), x, inf)

ans =
-(3*pi)/4

ans =
pi/4

Compute the polar angles of the elements of matrix Z:

Z = sym([sqrt(3) + 3*i, 3 + sqrt(3)*i; 1 + i, i]);
angle(Z)

ans =
[pi/3, pi/6]
[pi/4, pi/2]

Alternatives For real X and Y such that Z = X + Y*i, the call angle(Z) is equivalent
to atan2(Y,X).

See Also atan2 | conj | imag | real

4-22

any

Purpose Test whether at least one of equations and inequalities represented as
elements of symbolic array is valid

Syntax any(A)
any(A,dim)

Description any(A) tests whether at least one element of A returns logical 1
(true). If A is a matrix, any tests elements of each column. If A is a
multidimensional array, any tests elements along one dimension.

any(A,dim) tests along the dimension of A specified by dim.

Tips • If A is an empty symbolic array, any(A) returns logical 0.

• If some elements of A are just numeric values (not equations or
inequalities), any converts these values as follows. All nonzero
numeric values become logical 1. The value 0 becomes logical 0.

• If A is a vector and any of its elements returns logical 1, any(A)
returns logical 1. If all elements are zero, any(A) returns logical 0.

• If A is a multidimensional array, any(A) treats the values along the
first dimension that is not equal to 1 (non-singleton dimension) as
vectors, returning logical 1 or 0 for each vector.

Input
Arguments

A

Symbolic vector, matrix, or multidimensional symbolic array. For
example, it can be an array of symbolic equations, inequalities, or
logical expressions with symbolic subexpressions.

dim

Integer. For example, if A is a matrix, any(A,1) tests elements of each
column and returns a row vector of logical 1s and 0s. any(A,2) tests
elements of each row and returns a column vector of logical 1s and 0s.

4-23

any

Default: The first dimension that is not equal to 1 (non-singleton
dimension). For example, if A is a matrix, any(A) treats the
columns of A as vectors.

Examples Create vector V that contains the symbolic equation and inequalities
as its elements:

syms x real
V = [x ~= x + 1, abs(x) >= 0, x == x];

Use any to test whether at least one of them is valid for all values of x:

any(V)

ans =
1

Create this matrix of symbolic equations and inequalities:

syms x real
M = [x == 2*x, x == abs(x); abs(x) >= 0, x == 2*x]

M =
[x == 2*x, x == abs(x)]
[0 <= abs(x), x == 2*x]

Use any to test equations and inequalities of this matrix. By default,
any tests whether any element of each column is valid for all possible
values of variables. If at least one equation or inequality in the column
is valid (returns logical 1), then any returns logical 1 for that column.
Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the
first column and 0 for the second column:

any(M)

ans =
1 0

4-24

any

Create this matrix of symbolic equations and inequalities:

syms x real
M = [x == 2*x, x == abs(x); abs(x) >= 0, x == 2*x]

M =
[x == 2*x, x == abs(x)]
[0 <= abs(x), x == 2*x]

For matrices and multidimensional arrays, any can test elements along
the specified dimension. To specify the dimension, use the second
argument of any. For example, to test elements of each column of a
matrix, use the value 1 as the second argument:

any(M, 1)

ans =
1 0

To test elements of each row, use the value 2 as the second argument:

any(M, 2)

ans =
0
1

Test whether any element of this vector returns logical 1. Note that any
also converts all numeric values outside equations and inequalities to
logical 1s and 0s. The numeric value 0 becomes logical 0:

syms x
any([0, x == x + 1])

ans =
0

4-25

any

All nonzero numeric values, including negative and complex values,
become logical 1s:

any([-4 + i, x == x + 1])

ans =
1

See Also all | and | isAlways | logical | not | or | xor

4-26

argnames

Purpose Input variables of symbolic function

Syntax argnames(f)

Description argnames(f) returns input variables of f.

Input
Arguments

f

Symbolic function.

Examples Create this symbolic function:

syms f(x, y)
f(x, y) = x + y;

Use argnames to find input variables of f:

argnames(f)

ans =
[x, y]

Create this symbolic function:

syms f(a, b, x, y)
f(x, b, y, a) = a*x + b*y;

Use argnames to find input variables of f. When returning variables,
argnames uses the same order as you used when you defined the
function:

argnames(f)

ans =
[x, b, y, a]

See Also formula | sym | syms | symvar

4-27

Arithmetic Operations

Purpose Perform arithmetic operations on symbols

Syntax A+B
A-B
A*B
A.*B
A\B
A.\B
B/A
A./B
A^B
A.^B
A'
A.'

Description + Matrix addition. A+B adds A and B. A and B must have
the same dimensions, unless one is scalar.

- Matrix subtraction. A-B subtracts B from A. A and B
must have the same dimensions, unless one is scalar.

* Matrix multiplication. A*B is the linear algebraic
product of A and B. The number of columns of A must
equal the number of rows of B, unless one is a scalar.

.* Array multiplication. A.*B is the entry-by-entry
product of A and B. A and B must have the same
dimensions, unless one is scalar.

\ Matrix left division. A\B solves the symbolic linear
equations A*X=B for X. Note that A\B is roughly
equivalent to inv(A)*B. Warning messages are
produced if X does not exist or is not unique.
Rectangular matrices A are allowed, but the equations
must be consistent; a least squares solution is not
computed.

4-28

Arithmetic Operations

.\ Array left division. A.\B is the matrix with entries
B(i,j)/A(i,j). A and B must have the same
dimensions, unless one is scalar.

/ Matrix right division. B/A solves the symbolic linear
equation X*A=B for X. Note that B/A is the same as
(A.'\B.').'. Warning messages are produced if X
does not exist or is not unique. Rectangular matrices
A are allowed, but the equations must be consistent; a
least squares solution is not computed.

./ Array right division. A./B is the matrix with entries
A(i,j)/B(i,j). A and B must have the same
dimensions, unless one is scalar.

^ Matrix power. A^B raises the square matrix A to the
integer power B. If A is a scalar and B is a square
matrix, A^B raises A to the matrix power B, using
eigenvalues and eigenvectors. A^B, where A and B are
both matrices, is an error.

.^ Array power. A.^B is the matrix with entries
A(i,j)^B(i,j). A and B must have the same
dimensions, unless one is scalar.

' Matrix Hermitian transpose. If A is complex, A' is the
complex conjugate transpose.

.' Array transpose. A.' is the real transpose of A. A.'
does not conjugate complex entries.

Examples The following statements

syms a b c d
A = [a b; c d];
A*A/A
A*A-A^2

return

4-29

Arithmetic Operations

[a, b]
[c, d]

[0, 0]
[0, 0]

The following statements

syms b1 b2
A = sym('a%d%d', [2 2]);
B = [b1 b2];
X = B/A;
x1 = X(1)
x2 = X(2)

return

x1 =
-(a21*b2 - a22*b1)/(a11*a22 - a12*a21)

x2 =
(a11*b2 - a12*b1)/(a11*a22 - a12*a21)

See Also null | solve

4-30

assume

Purpose Set assumption on symbolic object

Syntax assume(assumption)
assume(expr,set)

Description assume(assumption) states that assumption is valid for all symbolic
variables in assumption. It also removes any assumptions previously
made on these symbolic variables.

assume(expr,set) states that expr belongs to set. This new
assumption replaces previously set assumptions on all variables in
expr.

Tips • assume removes any assumptions previously set on the symbolic
variables. To retain previous assumptions while adding a new one,
use assumeAlso.

• When you delete a symbolic variable from the MATLAB workspace
using clear, all assumptions that you set on that variable remain
in the symbolic engine. If you later declare a new symbolic variable
with the same name, it inherits these assumptions.

• To clear all assumptions set on a symbolic variable and the value of
the variable, use this command:

syms x clear

• To clear assumptions and keep the value of the variable, use this
command:

sym('x','clear')

• To delete all objects in the MATLAB workspace and close the
MuPAD engine associated with the MATLAB workspace clearing all
assumptions, use this command:

clear all

4-31

assume

• If assumption is an inequality, then both sides of the inequality
must represent real values. Inequalities with complex numbers are
invalid because the field of complex numbers is not an ordered field.
(It is impossible to tell whether 5 + i is greater or less than 2 +
3*i.) MATLAB projects complex numbers in inequalities to real axis.
For example, x > i becomes x > 0, and x <= 3 + 2*i becomes x
<= 3.

• The toolbox does not support assumptions on symbolic functions.
Make assumptions on symbolic variables and expressions instead.

Input
Arguments

assumption

Symbolic expression, equation, relation, or vector or matrix of symbolic
expressions, equations, or relations. You also can combine several
assumptions by using the logical operators and, or, xor, not, or their
shortcuts.

expr

Symbolic variable, expression, vector, or matrix.

set

One of these strings: integer, rational, or real.

Examples Compute this integral. If you do not make any assumptions, int returns
this piecewise result:

syms x a
int(x^a, x)

ans =
piecewise([a == -1, log(x)], [a ~= -1, x^(a + 1)/(a + 1)])

Use assume to set an assumption that x does not equal -1:

assume(a ~= -1)

Compute the same integral again. Now int returns this result:

4-32

assume

int(x^a, x)

ans =
x^(a + 1)/(a + 1)

For further computations, clear the assumption:

syms a clear

Calculate the time during which the object falls from a certain height
by solving the kinematic equation for the free fall motion. If you do not
consider the special case where no gravitational forces exist, you can
assume that the gravitational acceleration g is positive:

syms g h t
assume(g > 0)
solve(h == g*t^2/2, t)

ans =
(2^(1/2)*h^(1/2))/g^(1/2)

-(2^(1/2)*h^(1/2))/g^(1/2)

You can also set assumptions on variables for which you solve an
equation. When you set assumptions on such variables, the solver
compares obtained solutions with the specified assumptions. This
additional task can slow down the solver.

assume(t > 0)
solve(h == g*t^2/2, t)

ans =
(2^(1/2)*h^(1/2))/g^(1/2)

For further computations, clear the assumptions:

syms g t clear

4-33

assume

Simplify this sine function:

syms n
simplify(sin(2*n*pi))

ans =
sin(2*pi*n)

Suppose n in this expression is an integer. Then you can simplify the
expression further using the appropriate assumption:

assume(n,'integer')
simplify(sin(2*n*pi))

ans =
0

For further computations, clear the assumption:

syms n clear

You can set assumptions not only on variables, but also on expressions.
For example, compute this integral:

syms x
int(1/abs(x^2 - 1), x)

ans =
-atanh(x)/sign(x^2 - 1)

If you know that x2 – 1 > 0, set the appropriate assumption:

assume(x^2 - 1 > 0)
int(1/abs(x^2 - 1), x)

ans =
-atanh(x)

4-34

assume

For further computations, clear the assumption:

syms x clear

Solve this equation:

syms x
solve(x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6
+ (365*x)/2 + 250/3, x)

ans =
-5
-1

1/2
100

-1/3

Use assume to restrict the solutions to the interval –1 <= x <= 1:

assume(-1 <= x <= 1)
solve(x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6
+ (365*x)/2 + 250/3, x)

ans =
-1

1/2
-1/3

To set several assumptions simultaneously, use the logical operators
and, or, xor, not, or their shortcuts. For example, all negative solutions
less than -1 and all positive solutions greater than 1:

assume(x < -1 | x > 1)
solve(x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6
+ (365*x)/2 + 250/3, x)

ans =

4-35

assume

-5
100

For further computations, clear the assumptions:

syms x clear

Alternatives When you create a new symbolic variable using sym and syms, you also
can set an assumption that the variable is real or positive:

a = sym('a','real');
b = sym('b','real');
c = sym('c','positive');

or more efficiently

syms a b real
syms c positive

See Also and | assumeAlso | assumptions | clear all | isAlways |
logical | not | or | sym | syms

Concepts • “Assumptions on Symbolic Objects” on page 1-35

4-36

assumeAlso

Purpose Add assumption on symbolic object

Syntax assumeAlso(assumption)
assumeAlso(expr,set)

Description assumeAlso(assumption) states that assumption is valid for
all symbolic variables in assumption. It retains all assumptions
previously set on these symbolic variables.

assumeAlso(expr,set) states that expr belongs to set in addition to
all previously made assumptions.

Tips • assumeAlso keeps all assumptions previously set on the symbolic
variables. To replace previous assumptions with the new one, use
assume.

• When adding assumptions, always check that a new assumption does
not contradict the existing assumptions. To see existing assumptions,
use assumptions. Symbolic Math Toolbox does not guarantee to
detect conflicting assumptions. Conflicting assumptions can lead to
unpredictable and inconsistent results.

• When you delete a symbolic variable from the MATLAB workspace
using clear, all assumptions that you set on that variable remain
in the symbolic engine. If later you declare a new symbolic variable
with the same name, it inherits these assumptions.

• To clear all assumptions set on a symbolic variable and the value of
the variable, use this command:

syms x clear

• To clear assumptions and keep the value of the variable, use this
command:

sym('x','clear')

4-37

assumeAlso

• To clear all objects in the MATLAB workspace and close the MuPAD
engine associated with the MATLAB workspace resetting all its
assumptions, use this command:

clear all

• If assumption is an inequality, then both sides of the inequality
must represent real values. Inequalities with complex numbers are
invalid because the field of complex numbers is not an ordered field.
(It is impossible to tell whether 5 + i is greater or less than 2 +
3*i.) MATLAB projects complex numbers in inequalities to real axis.
For example, x > i becomes x > 0, and x <= 3 + 2*i becomes x
<= 3.

• The toolbox does not support assumptions on symbolic functions.
Make assumptions on symbolic variables and expressions instead.

Input
Arguments

assumption

Symbolic expression, equation, relation, or vector or matrix of symbolic
expressions, equations, or relations. You also can combine several
assumptions by using the logical operators and, or, xor, not, or their
shortcuts.

expr

Symbolic variable, expression, vector, or matrix.

set

One of these strings: integer, rational, or real.

Examples Solve this equation assuming that both x and y are nonnegative:

syms x y
assume(x >= 0 & y >= 0)
s = solve(x^2 + y^2 == 1, y)

s =

4-38

assumeAlso

{[(- x + 1)^(1/2)*(x + 1)^(1/2), 1],...
[-(- x + 1)^(1/2)*(x + 1)^(1/2), 1]} intersect...
Dom::Interval([0], Inf)

Now add the assumption that x < 1. To add a new assumption without
removing the previous one, use assumeAlso:

assumeAlso(x < 1)

Solve the same equation under the expanded set of assumptions:

s = solve(x^2 + y^2 == 1, y)

s =
(1 - x)^(1/2)*(x + 1)^(1/2)

For further computations, clear the assumptions:

syms x y clear

When declaring the symbolic variable n, set an assumption that n is
positive:

syms n positive

Using assumeAlso, you can add more assumptions on the same variable
n. For example, assume also that n is and integer:

assumeAlso(n,'integer')

To see all assumptions currently valid for the variable n, use
assumptions. In this case, n is a positive integer.

assumptions(n)

ans =
[n in Z_, 0 < n]

4-39

assumeAlso

For further computations, clear the assumptions:

syms n clear

When you add assumptions, ensure that the new assumptions do not
contradict the previous assumptions. Contradicting assumptions
can lead to inconsistent and unpredictable results. In some cases,
assumeAlso detects conflicting assumptions and issues the following
error:

syms y
assume(y,'real')
assumeAlso(y == i)

Error using mupadmex
Error in MuPAD command: Inconsistent assumptions
detected. [property::_setgroup]

assumeAlso does not guarantee to detect contradicting assumptions.
For example, you can assume that y is nonzero, and both y and y*i
are real values:

syms y
assume(y ~= 0)
assumeAlso(y,'real')
assumeAlso(y*i,'real')

To see all assumptions currently valid for the variable y, use
assumptions:

assumptions(y)

ans =
[y in R_, y ~= 0, y*i in R_]

For further computations, clear the assumptions:

syms y clear

4-40

assumeAlso

Alternatives Instead of adding assumptions one by one, you can set several
assumptions in one function call. To set several assumptions, use
assume and combine these assumptions by using the logical operators
and, or, xor, not, all, any, or their shortcuts.

See Also and | assume | assumptions | clear all | isAlways | logical
| not | or | sym | syms

Concepts • “Assumptions on Symbolic Objects” on page 1-35

4-41

assumptions

Purpose Show assumptions set on symbolic variable

Syntax assumptions(var)
assumptions

Description assumptions(var) returns all assumptions set on variable var.

assumptions returns all assumptions set on all variables in MATLAB
Workspace.

Tips • When you delete a symbolic object from the MATLAB workspace by
using clear, all assumptions that you set on that object remain in
the symbolic engine. If later you declare a new symbolic variable
with the same name, it inherits these assumptions.

• To clear all assumptions set on a symbolic variable var and the value
of the variable, use this command:

syms var clear

• To clear assumptions and keep the value of the variable, use this
command:

sym('var','clear')

• To clear all objects in the MATLAB workspace and close the MuPAD
engine associated with the MATLAB workspace resetting all its
assumptions, use this command:

clear all

Input
Arguments

var

Symbolic variable or array of symbolic variables.

Examples Assume that the variable n is integer and the variable x is rational. In
addition to that , assume that the product n*x belongs to the interval
from -100 to 100:

4-42

assumptions

syms n x
assume(n,'integer')
assume(x,'rational')
assumeAlso(-100 <= n*x <= 100)

To see the assumptions set on the variable n, enter:

assumptions(n)

ans =
[-100 <= n*x, n*x <= 100, n in Z_]

To see the assumptions set on the variable x, enter:

assumptions(x)

ans =
[-100 <= n*x, n*x <= 100, x in Q_]

To see the assumptions set on all variables, use assumptions without
any arguments:

assumptions

ans =
[-100 <= n*x, n*x <= 100, n in Z_, x in Q_]

For further computations, clear the assumptions:

syms n x clear

Use assumptions to return all assumptions, including those set by the
syms command:

syms x real
assumeAlso(x < 0)
assumptions(x)

4-43

assumptions

ans =
[x < 0, x in R_]

See Also and | assume | assumeAlso | clear all | isAlways | logical
| not | or | sym | syms

Concepts • “Assumptions on Symbolic Objects” on page 1-35

4-44

atan2

Purpose Symbolic four-quadrant inverse tangent

Syntax atan2(Y,X)

Description atan2(Y,X) computes the four-quadrant inverse tangent (arctangent) of
Y and X. If Y and X are vectors or matrices, atan2 computes arctangents
element by element.

Tips • Calling atan2 for numbers (or vectors or matrices of numbers) that
are not symbolic objects invokes the MATLAB atan2 function.

• If one of the arguments X and Y is a vector or a matrix, and another
one is a scalar, then atan2 expands the scalar into a vector or a
matrix of the same length with all elements equal to that scalar.

• Symbolic arguments X and Y are assumed to be real.

• If X = 0 and Y > 0, then atan2(Y,X) returns pi/2.

If X = 0 and Y < 0, then atan2(Y,X) returns -pi/2.

If X = Y = 0, then atan2(Y,X) returns 0.

Input
Arguments

Y

Symbolic number, variable, expression, function. The function also
accepts a vector or matrix of symbolic numbers, variables, expressions,
functions. If Y is a number, it must be real. If Y is a vector or matrix, it
must either be a scalar or have the same dimensions as X. All numerical
elements of Y must be real.

X

Symbolic number, variable, expression, function. The function also
accepts a vector or matrix of symbolic numbers, variables, expressions,
functions. If X is a number, it must be real. If X is a vector or matrix, it
must either be a scalar or have the same dimensions as Y. All numerical
elements of X must be real.

4-45

atan2

Definitions atan2 vs. atan

If X ≠ 0 and Y ≠ 0, then

atan2 atan sign signY X
Y
X

Y X, ()
2

1

Results returned by atan2 belong to the closed interval [-pi,pi].
Results returned by atan belong to the closed interval [-pi/2,pi/2].

Examples Compute the arctangents of these parameters. Because these numbers
are not symbolic objects, you get floating-point results.

[atan2(1, 1), atan2(pi, 4), atan2(inf, inf)]

ans =
0.7854 0.6658 0.7854

Compute the arctangents of these parameters which are converted to
symbolic objects:

[atan2(sym(1), 1), atan2(sym(pi), sym(4)),
atan2(inf, sym(inf))]

ans =
[pi/4, atan(pi/4), angle(Inf + Inf*i)]

Compute the limits of this symbolic expression:

syms x;
limit(atan2(x^2/(1 + x), x), x, -inf)
limit(atan2(x^2/(1 + x), x), x, inf)

ans =
-(3*pi)/4

4-46

atan2

ans =
pi/4

Compute the arctangents of the elements of matrices Y and X:

Y = sym([3 sqrt(3); 1 1]);
X = sym([sqrt(3) 3; 1 0]);
atan2(Y, X)

ans =
[pi/3, pi/6]
[pi/4, pi/2]

Alternatives For complex Z = X + Y*i, the call atan2(Y,X) is equivalent to
angle(Z).

See Also angle | conj | imag | real

4-47

besseli

Purpose Modified Bessel function of the first kind

Syntax besseli(nu,z)
besseli(nu,A)

Description besseli(nu,z) returns the modified Bessel function of the first kind,
Iν(z).

besseli(nu,A) returns the modified Bessel function of the first kind
for each element of A.

Tips • Calling besseli for a number that is not a symbolic object invokes
the MATLAB besseli function.

Input
Arguments

nu

Symbolic number, variable, or expression.

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Modified Bessel Functions of the First Kind

The modified Bessel differential equation

z
d w

dz
z

dw
dz

z w2
2

2
2 2 0

has two linearly independent solutions. These solutions are represented
by the modified Bessel functions of the first kind, Iν(z), and the modified
Bessel functions of the second kind, Kν(z):

w z C I z C K z 1 2

4-48

besseli

This formula is the integral representation of the modified Bessel
functions of the first kind:

I z
z

e t dtz t

2

1 2
2

0
cos sin

Examples Solve this second-order differential equation. The solutions are the
modified Bessel functions of the first and the second kind.

syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)

ans =
C2*besseli(nu, z) + C3*besselk(nu, z)

Verify that the modified Bessel function of the first kind is a valid
solution of the modified Bessel differential equation.

syms nu z
simplify(z^2*diff(besseli(nu, z), z,
2) + z*diff(besseli(nu, z), z) - (z^2 +
nu^2)*besseli(nu, z)) == 0

ans =
1

Compute the modified Bessel functions of the first kind for these
numbers. Because these numbers are not symbolic objects, you get
floating-point results.

[besseli(0, 5), besseli(-1, 2), besseli(1/3, 7/4),
besseli(1, 3/2 + 2*i)]

ans =

4-49

besseli

27.2399 1.5906 1.7951
-0.1523 + 1.0992i

Compute the modified Bessel functions of the first kind for the numbers
converted to symbolic objects. For most symbolic (exact) numbers,
besseli returns unresolved symbolic calls.

[besseli(sym(0), 5), besseli(sym(-1), 2), besseli(1/3,
sym(7/4)), besseli(sym(1), 3/2 + 2*i)]

ans =
[besseli(0, 5), besseli(1, 2), besseli(1/3, 7/4),
besseli(1, 3/2 + 2*i)]

For symbolic variables and expressions, besseli also returns
unresolved symbolic calls:

syms x y
[besseli(x, y), besseli(1, x^2), besseli(2, x -
y), besseli(x^2, x*y)]

ans =
[besseli(x, y), besseli(1, x^2), besseli(2, x -
y), besseli(x^2, x*y)]

If the first parameter is an odd integer multiplied by 1/2, besseli
rewrites the Bessel functions in terms of elementary functions:

syms x
besseli(1/2, x)

ans =
(2^(1/2)*sinh(x))/(pi^(1/2)*x^(1/2))

besseli(-1/2, x)

4-50

besseli

ans =
(2^(1/2)*cosh(x))/(pi^(1/2)*x^(1/2))

besseli(-3/2, x)

ans =
(2^(1/2)*(sinh(x) - cosh(x)/x))/(pi^(1/2)*x^(1/2))

besseli(5/2, x)

ans =
-(2^(1/2)*((3*cosh(x))/x - sinh(x)*(3/x^2 +
1)))/(pi^(1/2)*x^(1/2))

Differentiate the expressions involving the modified Bessel functions
of the first kind:

syms x y
diff(besseli(1, x))
diff(diff(besseli(0, x^2 + x*y -y^2), x), y)

ans =
besseli(0, x) - besseli(1, x)/x

ans =
besseli(1, x^2 + x*y - y^2) +...
(2*x + y)*(besseli(0, x^2 + x*y - y^2)*(x - 2*y) -...
(besseli(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Call besseli for the matrix A and the value 1/2. The result is a matrix
of the modified Bessel functions besseli(1/2, A(i,j)).

syms x
A = [-1, pi; x, 0];
besseli(1/2, A)

4-51

besseli

ans =
[(2^(1/2)*sinh(1)*i)/pi^(1/2), (2^(1/2)*sinh(pi))/pi]
[(2^(1/2)*sinh(x))/(pi^(1/2)*x^(1/2)),
0]

Plot the modified Bessel functions of the first kind for ν = 0, 1, 2, 3:

syms x y
for nu =[0, 1, 2, 3]

ezplot(besseli(nu, x) - y, [0, 4, -0.1, 4])
colormap([0 0 1])
hold on

end
title('Modified Bessel functions of the first kind')
ylabel('besselI(x)')
grid
hold off

4-52

besseli

References [1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.”Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also airy | besselj | besselk | bessely | mfun | mfunlist

4-53

besseli

How To • “Special Functions of Applied Mathematics” on page 2-142

4-54

besselj

Purpose Bessel function of the first kind

Syntax besselj(nu,z)
besselj(nu,A)

Description besselj(nu,z) returns the Bessel function of the first kind, Jν(z).

besselj(nu,A) returns the Bessel function of the first kind for each
element of A.

Tips • Calling besselj for a number that is not a symbolic object invokes
the MATLAB besselj function.

Input
Arguments

nu

Symbolic number, variable, or expression.

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Bessel Functions of the First Kind

The Bessel differential equation

z
d w

dz
z

dw
dz

z w2
2

2
2 2 0

has two linearly independent solutions. These solutions are represented
by the Bessel functions of the first kind, Jν(z), and the Bessel functions
of the second kind, Yν(z):

w z C J z C Y z 1 2

4-55

besselj

This formula is the integral representation of the Bessel functions of
the first kind:

J z
z

z t t dt

2

1 2
2

0
cos cos sin

Examples Solve this second-order differential equation. The solutions are the
Bessel functions of the first and the second kind.

syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)

ans =
C2*besselj(nu, z) + C3*bessely(nu, z)

Verify that the Bessel function of the first kind is a valid solution of
the Bessel differential equation:

syms nu z
simplify(z^2*diff(besselj(nu, z), z,
2) + z*diff(besselj(nu, z), z) + (z^2 -
nu^2)*besselj(nu, z)) == 0

ans =
1

Compute the Bessel functions of the first kind for these numbers.
Because these numbers are not symbolic objects, you get floating-point
results.

[besselj(0, 5), besselj(-1, 2), besselj(1/3, 7/4),
besselj(1, 3/2 + 2*i)]

ans =

4-56

besselj

-0.1776 -0.5767 0.5496
1.6113 + 0.3982i

Compute the Bessel functions of the first kind for the numbers
converted to symbolic objects. For most symbolic (exact) numbers,
besselj returns unresolved symbolic calls.

[besselj(sym(0), 5), besselj(sym(-1), 2), besselj(1/3,
sym(7/4)), besselj(sym(1), 3/2 + 2*i)]

ans =
[besselj(0, 5), -besselj(1, 2), besselj(1/3, 7/4),
besselj(1, 3/2 + 2*i)]

For symbolic variables and expressions, besselj also returns
unresolved symbolic calls:

syms x y
[besselj(x, y), besselj(1, x^2), besselj(2, x -
y), besselj(x^2, x*y)]

ans =
[besselj(x, y), besselj(1, x^2), besselj(2, x -
y), besselj(x^2, x*y)]

If the first parameter is an odd integer multiplied by 1/2, besselj
rewrites the Bessel functions in terms of elementary functions:

syms x
besselj(1/2, x)

ans =
(2^(1/2)*sin(x))/(pi^(1/2)*x^(1/2))

besselj(-1/2, x)

4-57

besselj

ans =
(2^(1/2)*cos(x))/(pi^(1/2)*x^(1/2))

besselj(-3/2, x)

ans =
-(2^(1/2)*(sin(x) + cos(x)/x))/(pi^(1/2)*x^(1/2))

besselj(5/2, x)

ans =
-(2^(1/2)*((3*cos(x))/x - sin(x)*(3/x^2 -
1)))/(pi^(1/2)*x^(1/2))

Differentiate the expressions involving the Bessel functions of the first
kind:

syms x y
diff(besselj(1, x))
diff(diff(besselj(0, x^2 + x*y -y^2), x), y)

ans =
besselj(0, x) - besselj(1, x)/x

ans =
- besselj(1, x^2 + x*y - y^2) -...
(2*x + y)*(besselj(0, x^2 + x*y - y^2)*(x - 2*y) -...
(besselj(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Call besselj for the matrix A and the value 1/2. The result is a matrix
of the Bessel functions besselj(1/2, A(i,j)).

syms x
A = [-1, pi; x, 0];
besselj(1/2, A)

4-58

besselj

ans =
[(2^(1/2)*sin(1)*i)/pi^(1/2), 0]
[(2^(1/2)*sin(x))/(pi^(1/2)*x^(1/2)), 0]

Plot the Bessel functions of the first kind for ν = 0, 1, 2, 3:

syms x y
for nu =[0, 1, 2, 3]

ezplot(besselj(nu, x) - y, [0, 10, -0.5, 1.1])
colormap([0 0 1])
hold on

end
title('Bessel functions of the first kind')
ylabel('besselJ(x)')
grid
hold off

4-59

besselj

References [1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.”Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also airy | besseli | besselk | bessely | mfun | mfunlist

4-60

besselj

How To • “Special Functions of Applied Mathematics” on page 2-142

4-61

besselk

Purpose Modified Bessel function of the second kind

Syntax besselk(nu,z)
besselk(nu,A)

Description besselk(nu,z) returns the modified Bessel function of the second
kind, Kν(z).

besselk(nu,A) returns the modified Bessel function of the second kind
for each element of A.

Tips • Calling besselk for a number that is not a symbolic object invokes
the MATLAB besselk function.

Input
Arguments

nu

Symbolic number, variable, or expression.

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Modified Bessel Functions of the Second Kind

The modified Bessel differential equation

z
d w

dz
z

dw
dz

z w2
2

2
2 2 0

has two linearly independent solutions. These solutions are represented
by the modified Bessel functions of the first kind, Iν(z), and the modified
Bessel functions of the second kind, Kν(z):

w z C I z C K z 1 2

4-62

besselk

The modified Bessel functions of the second kind are defined via the
modified Bessel functions of the first kind:

K z I z I z

2

sin

Here Iν(z) are the modified Bessel functions of the first kind:

I z
z

e t dtz t

2

1 2
2

0
cos sin

Examples Solve this second-order differential equation. The solutions are the
modified Bessel functions of the first and the second kind.

syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)

ans =
C2*besseli(nu, z) + C3*besselk(nu, z)

Verify that the modified Bessel function of the second kind is a valid
solution of the modified Bessel differential equation:

syms nu z
simplify(z^2*diff(besselk(nu, z), z,
2) + z*diff(besselk(nu, z), z) - (z^2 +
nu^2)*besselk(nu, z)) == 0

ans =
1

Compute the modified Bessel functions of the second kind for these
numbers. Because these numbers are not symbolic objects, you get
floating-point results.

4-63

besselk

[besselk(0, 5), besselk(-1, 2), besselk(1/3, 7/4),
besselk(1, 3/2 + 2*i)]

ans =
0.0037 0.1399 0.1594

-0.1620 - 0.1066i

Compute the modified Bessel functions of the second kind for the
numbers converted to symbolic objects. For most symbolic (exact)
numbers, besselk returns unresolved symbolic calls.

[besselk(sym(0), 5), besselk(sym(-1), 2), besselk(1/3,
sym(7/4)), besselk(sym(1), 3/2 + 2*i)]

ans =
[besselk(0, 5), besselk(1, 2), besselk(1/3, 7/4),
besselk(1, 3/2 + 2*i)]

For symbolic variables and expressions, besselk also returns
unresolved symbolic calls:

syms x y
[besselk(x, y), besselk(1, x^2), besselk(2, x -
y), besselk(x^2, x*y)]

ans =
[besselk(x, y), besselk(1, x^2), besselk(2, x -
y), besselk(x^2, x*y)]

If the first parameter is an odd integer multiplied by 1/2, besselk
rewrites the Bessel functions in terms of elementary functions:

syms x
besselk(1/2, x)

ans =

4-64

besselk

(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))

besselk(-1/2, x)

ans =
(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))

besselk(-3/2, x)

ans =
(2^(1/2)*pi^(1/2)*exp(-x)*(1/x + 1))/(2*x^(1/2))

besselk(5/2, x)

ans =
(2^(1/2)*pi^(1/2)*exp(-x)*(3/x + 3/x^2 + 1))/(2*x^(1/2))

Differentiate the expressions involving the modified Bessel functions
of the second kind:

syms x y
diff(besselk(1, x))
diff(diff(besselk(0, x^2 + x*y -y^2), x), y)

ans =
- besselk(1, x)/x - besselk(0, x)

ans =
(2*x + y)*(besselk(0, x^2 + x*y - y^2)*(x - 2*y) +...
(besselk(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2)) -...
besselk(1, x^2 + x*y - y^2)

Call besselk for the matrix A and the value 1/2. The result is a matrix
of the modified Bessel functions besselk(1/2, A(i,j)).

4-65

besselk

syms x
A = [-1, pi; x, 0];
besselk(1/2, A)

ans =
[-(2^(1/2)*pi^(1/2)*exp(1)*i)/2, (2^(1/2)*exp(-pi))/2]
[(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2)),
Inf]

Plot the modified Bessel functions of the second kind for ν = 0, 1, 2, 3:

syms x y
for nu =[0, 1, 2, 3]

ezplot(besselk(nu, x) - y, [0, 4, 0, 4])
colormap([0 0 1])
hold on

end
title('Modified Bessel functions of the second kind')
ylabel('besselK(x)')
grid
hold off

4-66

besselk

References [1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.”Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also airy | besseli | besselj | bessely | mfun | mfunlist

4-67

besselk

How To • “Special Functions of Applied Mathematics” on page 2-142

4-68

bessely

Purpose Bessel function of the second kind

Syntax bessely(nu,z)
bessely(nu,A)

Description bessely(nu,z) returns the Bessel function of the second kind, Yν(z).

bessely(nu,A) returns the Bessel function of the second kind for each
element of A.

Tips • Calling bessely for a number that is not a symbolic object invokes
the MATLAB bessely function.

Input
Arguments

nu

Symbolic number, variable, or expression representing a real number.

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Bessel Functions of the Second Kind

The Bessel differential equation

z
d w

dz
z

dw
dz

z w2
2

2
2 2 0

has two linearly independent solutions. These solutions are represented
by the Bessel functions of the first kind, Jν(z), and the Bessel functions
of the second kind, Yν(z):

w z C J z C Y z 1 2

4-69

bessely

The Bessel functions of the second kind are defined via the Bessel
functions of the first kind:

Y z
J z J z

cos
sin

Here Jν(z) are the Bessel function of the first kind:

J z
z

z t t dt

2

1 2
2

0
cos cos sin

Examples Solve this second-order differential equation. The solutions are the
Bessel functions of the first and the second kind.

syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)

ans =
C2*besselj(nu, z) + C3*bessely(nu, z)

Verify that the Bessel function of the second kind is a valid solution of
the Bessel differential equation:

syms nu z
simplify(z^2*diff(bessely(nu, z), z,
2) + z*diff(bessely(nu, z), z) + (z^2 -
nu^2)*bessely(nu, z)) == 0

ans =
1

Compute the Bessel functions of the second kind for these numbers.
Because these numbers are not symbolic objects, you get floating-point
results.

4-70

bessely

[bessely(0, 5), bessely(-1, 2), bessely(1/3, 7/4),
bessely(1, 3/2 + 2*i)]

ans =
-0.3085 0.1070 0.2358

-0.4706 + 1.5873i

Compute the Bessel functions of the second kind for the numbers
converted to symbolic objects. For most symbolic (exact) numbers,
bessely returns unresolved symbolic calls.

[bessely(sym(0), 5), bessely(sym(-1), 2), bessely(1/3,
sym(7/4)), bessely(sym(1), 3/2 + 2*i)]

ans =
[bessely(0, 5), -bessely(1, 2), bessely(1/3, 7/4),
bessely(1, 3/2 + 2*i)]

For symbolic variables and expressions, bessely also returns
unresolved symbolic calls:

syms x y
[bessely(x, y), bessely(1, x^2), bessely(2, x -
y), bessely(x^2, x*y)]

ans =
[bessely(x, y), bessely(1, x^2), bessely(2, x -
y), bessely(x^2, x*y)]

If the first parameter is an odd integer multiplied by 1/2, besseli
rewrites the Bessel functions in terms of elementary functions:

syms x
bessely(1/2, x)

ans =

4-71

bessely

-(2^(1/2)*cos(x))/(pi^(1/2)*x^(1/2))

bessely(-1/2, x)

ans =
(2^(1/2)*sin(x))/(pi^(1/2)*x^(1/2))

bessely(-3/2, x)

ans =
(2^(1/2)*(cos(x) - sin(x)/x))/(pi^(1/2)*x^(1/2))

bessely(5/2, x)

ans =
-(2^(1/2)*((3*sin(x))/x + cos(x)*(3/x^2 -
1)))/(pi^(1/2)*x^(1/2))

Differentiate the expressions involving the Bessel functions of the
second kind:

syms x y
diff(bessely(1, x))
diff(diff(bessely(0, x^2 + x*y -y^2), x), y)

ans =
bessely(0, x) - bessely(1, x)/x

ans =
- bessely(1, x^2 + x*y - y^2) -...
(2*x + y)*(bessely(0, x^2 + x*y - y^2)*(x - 2*y) -...
(bessely(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Call bessely for the matrix A and the value 1/2. The result is a matrix
of the Bessel functions bessely(1/2, A(i,j)).

4-72

bessely

syms x
A = [-1, pi; x, 0];
bessely(1/2, A)

ans =
[(2^(1/2)*cos(1)*i)/pi^(1/2), 2^(1/2)/pi]
[-(2^(1/2)*cos(x))/(pi^(1/2)*x^(1/2)), Inf]

Plot the Bessel functions of the second kind for ν = 0, 1, 2, 3:

syms x y
for nu =[0, 1, 2, 3]

ezplot(bessely(nu, x) - y, [0, 10, -1, 0.6])
colormap([0 0 1])
hold on

end
title('Bessel functions of the second kind')
ylabel('besselY(x)')
grid
hold off

4-73

bessely

References [1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.”Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also airy | besseli | besselj | besselk | mfun | mfunlist

4-74

bessely

How To • “Special Functions of Applied Mathematics” on page 2-142

4-75

beta

Purpose Beta function

Syntax beta(x,y)
beta(x,A)

Description beta(x,y) returns the beta function of x and y.

beta(x,A) returns the beta functions of x and each element of A.

Tips • The beta function is uniquely defined for positive numbers and
complex numbers with positive real parts. It is approximated for
other numbers.

• Calling beta for numbers that are not symbolic objects invokes the
MATLAB beta function. This function accepts real arguments only.
If you want to compute the beta function for complex numbers, use
sym to convert the numbers to symbolic objects, and then call beta
for those symbolic objects.

• If one or both parameters are negative numbers, convert these
numbers to symbolic objects using sym, and then call beta for those
symbolic objects.

• If the beta function has a singularity, beta returns the positive
infinity Inf.

• beta(0, 0) returns NaN.

• beta(x,y) = beta(y,x) and beta(x,A) = beta(A,x).

Input
Arguments

x

Symbolic number, variable, or expression.

y

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

4-76

beta

Definitions Beta Function

This integral defines the beta function:

x y t t dt
x y
x y

x y,

 1 1

0

1

1

Examples Compute the beta function for these numbers. Because these numbers
are not symbolic objects, you get floating-point results:

[beta(1, 5), beta(3, sqrt(2)), beta(pi,
exp(1)), beta(0, 1)]

ans =
0.2000 0.1716 0.0379 Inf

Compute the beta function for the numbers converted to symbolic
objects:

[beta(sym(1), 5), beta(3, sym(2)), beta(sym(4), sym(4))]

ans =
[1/5, 1/12, 1/140]

If one or both parameters are complex numbers, convert these numbers
to symbolic objects:

[beta(sym(i), 3/2), beta(sym(i), i), beta(sym(i
+ 2), 1 - i)]

ans =
[(pi^(1/2)*gamma(i))/(2*gamma(3/2 + i)),
gamma(i)^2/gamma(2*i), (pi*(1/2 + i/2))/sinh(pi)]

4-77

beta

Compute the beta function for negative parameters. If one or both
arguments are negative numbers, convert these numbers to symbolic
objects:

[beta(sym(-3), 2), beta(sym(-1/3), 2), beta(sym(-3),
4), beta(sym(-3), -2)]

ans =
[1/6, -9/2, Inf, Inf]

Call beta for the matrix A and the value 1. The result is a matrix of the
beta functions beta(A(i,j),1):

A = sym([1 2; 3 4]);
beta(A,1)

ans =
[1, 1/2]
[1/3, 1/4]

Differentiate the beta function, then substitute the variable t with the
value 2/3 and approximate the result using vpa:

syms t
u = diff(beta(t^2 + 1, t))
vpa(subs(u, t, 2/3), 10)

u =
beta(t, t^2 + 1)*(psi(t) + 2*t*psi(t^2 + 1) -...
psi(t^2 + t + 1)*(2*t + 1))

ans =
-2.836889094

4-78

beta

Expand these beta functions:

syms x y
expand(beta(x, y))
expand(beta(x + 1, y - 1))

ans =
(gamma(x)*gamma(y))/gamma(x + y)

ans =
-(x*gamma(x)*gamma(y))/(gamma(x + y) - y*gamma(x + y))

References Zelen, M. and N. C. Severo. “Probability Functions.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also gamma | factorial | mfun | mfunlist | nchoosek | psi

How To • “Special Functions of Applied Mathematics” on page 2-142

4-79

ccode

Purpose C code representation of symbolic expression

Syntax ccode(s)
ccode(s,'file',fileName)

Description ccode(s) returns a fragment of C that evaluates the symbolic
expression s.

ccode(s,'file',fileName) writes an “optimized” C code fragment
that evaluates the symbolic expression s to the file named fileName.
“Optimized” means intermediate variables are automatically generated
in order to simplify the code. MATLAB generates intermediate
variables as a lowercase letter t followed by an automatically generated
number, for example t32.

Examples The statements

syms x
f = taylor(log(1+x));
ccode(f)

return

t0 =
x-(x*x)*(1.0/2.0)+(x*x*x)*(1.0/3.0)-(x*x*x*x)*(1.0/4.0)+...
(x*x*x*x*x)*(1.0/5.0);

The statements

H = sym(hilb(3));
ccode(H)

return

H[0][0] = 1.0;
H[0][1] = 1.0/2.0;
H[0][2] = 1.0/3.0;
H[1][0] = 1.0/2.0;

4-80

ccode

H[1][1] = 1.0/3.0;
H[1][2] = 1.0/4.0;
H[2][0] = 1.0/3.0;
H[2][1] = 1.0/4.0;
H[2][2] = 1.0/5.0;

The statements

syms x
z = exp(-exp(-x));
ccode(diff(z,3),'file','ccodetest');

return a file named ccodetest containing the following:

t2 = exp(-x);
t3 = exp(-t2);
t0 = t3*exp(x*(-2.0))*(-3.0)+t3*exp(x*(-3.0))+t2*t3;

See Also fortran | latex | matlabFunction | pretty

4-81

ceil

Purpose Round symbolic matrix toward positive infinity

Syntax Y = ceil(x)

Description Y = ceil(x) is the matrix of the smallest integers greater than or
equal to x.

Examples x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also round | floor | fix | frac

4-82

char

Purpose Convert symbolic objects to strings

Syntax char(A)

Description char(A) converts a symbolic scalar or a symbolic array to a string.

Tips • char can change term ordering in an expression.

Input
Arguments

A

Symbolic scalar or symbolic array.

Examples Convert symbolic expressions to strings, and then concatenate the
strings:

syms x
y = char(x^3 + x^2 + 2*x - 1);
name = [y, ' represents a polynomial expression']

name =
2*x + x^2 + x^3 - 1 represents a polynomial expression

Note that char changes the order of the terms in the resulting string.

Convert a symbolic matrix to a string:

A = sym(hilb(3))
char(A)

A =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

ans =
matrix([[1,1/2,1/3],[1/2,1/3,1/4],[1/3,1/4,1/5]])

4-83

char

See Also sym | double | pretty

4-84

charpoly

Purpose Characteristic polynomial of matrix

Syntax charpoly(A)
charpoly(A,var)

Description charpoly(A) returns a vector of the coefficients of the characteristic
polynomial of A. If A is a symbolic matrix, charpoly returns a symbolic
vector. Otherwise, it returns a vector of double-precision values.

charpoly(A,var) returns the characteristic polynomial of A in terms
of var.

Input
Arguments

A

Matrix.

var

Free symbolic variable.

Default: If you do not specify var, charpoly returns a vector of
coefficients of the characteristic polynomial instead of returning
the polynomial itself.

Definitions Characteristic Polynomial of a Matrix

The characteristic polynomial of an n-by-n matrix A is the polynomial
pA(x), such that

p x xI AA n det

Here In is the n-by-n identity matrix.

Examples Compute the characteristic polynomial of the matrix A in terms of the
variable x:

syms x;
A = sym([1 1 0; 0 1 0; 0 0 1]);

4-85

charpoly

charpoly(A, x)

ans =
x^3 - 3*x^2 + 3*x - 1

To find the coefficients of the characteristic polynomial of A, call
charpoly with one argument:

A = sym([1 1 0; 0 1 0; 0 0 1]);
charpoly(A)

ans =
[1, -3, 3, -1]

Find the coefficients of the characteristic polynomial of the symbolic
matrix A. For this matrix, charpoly returns the symbolic vector of
coefficients:

A = sym([1 2; 3 4]);
P = charpoly(A)

P =
[1, -5, -2]

Now find the coefficients of the characteristic polynomial of the matrix
B, all elements of which are double-precision values. Note that in this
case charpoly returns coefficients as double-precision values:

B = ([1 2; 3 4]);
P = charpoly(B)

P =
1 -5 -2

4-86

charpoly

References [1] Cohen, H. “A Course in Computational Algebraic Number Theory.”
Graduate Texts in Mathematics (Axler, Sheldon and Ribet, Kenneth A.,
eds.). Vol. 138, Springer, 1993.

[2] Abdeljaoued, J. “The Berkowitz Algorithm, Maple and Computing
the Characteristic Polynomial in an Arbitrary Commutative Ring.”
MapleTech, Vol. 4, Number 3, pp 21–32, Birkhauser, 1997.

See Also det | eig | jordan | minpoly | poly2sym | sym2poly

4-87

children

Purpose Subexpressions or terms of symbolic expression

Syntax children(expr)
children(A)

Description children(expr) returns a vector containing the child subexpressions of
the symbolic expression expr. For example, the child subexpressions of
a sum are its terms.

children(A) returns a cell array containing the child subexpressions of
each expression in A.

Input
Arguments

expr

Symbolic expression, equation, or inequality.

A

Vector or matrix of symbolic expressions, equations, or inequalities.

Examples Find the child subexpressions of this expression. Child subexpressions
of a sum are its terms.

syms x y
children(x^2 + x*y + y^2)

ans =
[x*y, x^2, y^2]

Find the child subexpressions of this expression. This expression is also
a sum, only some terms of that sum are negative.

children(x^2 - x*y - y^2)

ans =
[-x*y, x^2, -y^2]

The child subexpression of a variable is the variable itself:

4-88

children

children(x)

ans =
x

Create the symbolic expression using sym. With this approach, you
do not create symbolic variables corresponding to the terms of the
expression. Nevertheless, children finds the terms of the expression:

children(sym('a + b + c'))

ans =
[a, b, c]

Find the child subexpressions of this equation. The child subexpressions
of an equation are the left and right sides of that equation.

syms x y
children(x^2 + x*y == y^2 + 1)

ans =
[x^2 + y*x, y^2 + 1]

Find the child subexpressions of this inequality. The child
subexpressions of an inequality are the left and right sides of that
inequality.

children(sin(x) < cos(x))

ans =
[sin(x), cos(x)]

Call the children function for this matrix. The result is the cell array
containing the child subexpressions of each element of the matrix.

4-89

children

syms x y
s = children([x + y, sin(x)*cos(y); x^3 - y^3, exp(x*y^2)])

s =
[1x2 sym] [1x2 sym]
[1x2 sym] [1x1 sym]

To access the contents of cells in the cell array, use braces:

s{1:4}

ans =
[x, y]

ans =
[x^3, -y^3]

ans =
[cos(y), sin(x)]

ans =
x*y^2

See Also coeffs | numden | subs

Concepts • “Create Symbolic Expressions” on page 1-9

4-90

chol

Purpose Cholesky factorization

Syntax T = chol(A)
[T,p] = chol(A)
[T,p,S] = chol(A)
[T,p,s] = chol(A,'vector')
___ = chol(A,'lower')
___ = chol(A,'noCheck')
___ = chol(A,'real')
___ = chol(A,'lower','noCheck','real')
[T,p,s] = chol(A,'lower','vector','noCheck','real')

Description T = chol(A) returns an upper triangular matrix T, such that T'*T
= A. A must be a Hermitian positive definite matrix. Otherwise, this
syntax throws an error.

[T,p] = chol(A) computes the Cholesky factorization of A. This syntax
does not error if A is not a Hermitian positive definite matrix. If A is a
Hermitian positive definite matrix, then p is 0. Otherwise, T is sym([]),
and p is a positive integer (typically, p = 1).

[T,p,S] = chol(A) returns a permutation matrix S, such that T'*T =
S'*A*S, and the value p = 0 if matrix A is Hermitian positive definite.
Otherwise, it returns a positive integer p and an empty symbolic object
S = sym([]).

[T,p,s] = chol(A,'vector') returns the permutation information
as a vector s, such that A(s,s) = T'*T. If A is not recognized as a
Hermitian positive definite matrix, then p is a positive integer and s
= sym([]).

___ = chol(A,'lower') returns a lower triangular matrix T, such
that T*T' = A.

___ = chol(A,'noCheck') skips checking whether matrix A is
Hermitian positive definite. 'noCheck' lets you compute Cholesky
factorization of a matrix that contains symbolic parameters without
setting additional assumptions on those parameters.

4-91

chol

___ = chol(A,'real') computes the Cholesky factorization of A using
real arithmetic. In this case, chol computes a symmetric factorization A
= T.'*T instead of a Hermitian factorization A = T'*T. This approach
is based on the fact that if A is real and symmetric, then T'*T = T.'*T.
Use 'real' to avoid complex conjugates in the result.

___ = chol(A,'lower','noCheck','real') computes the Cholesky
factorization of A with one or more of these optional arguments:
'lower', 'noCheck', and 'real'. These optional arguments can
appear in any order.

[T,p,s] = chol(A,'lower','vector','noCheck','real') computes
the Cholesky factorization of A and returns the permutation information
as a vector s. You can use one or more of these optional arguments:
'lower', 'noCheck', and 'real'. These optional arguments can
appear in any order.

Tips • Calling chol for numeric arguments that are not symbolic objects
invokes the MATLAB chol function.

• If you use 'noCheck', then the identities T'*T = A (for an upper
triangular matrix T) and T*T' = A (for a lower triangular matrix T)
are not guaranteed to hold.

• If you use 'real', then the identities T'*T = A (for an upper
triangular matrix T) and T*T' = A (for a lower triangular matrix T)
are only guaranteed to hold for a real symmetric positive definite A.

• To use 'vector', you must specify three output arguments. Other
flags do not require a particular number of output arguments.

• If you use 'matrix' instead of 'vector', then chol returns
permutation matrices, as it does by default.

• If you use 'upper' instead of 'lower', then chol returns an upper
triangular matrix, as it does by default.

• If A is not a Hermitian positive definite matrix, then the syntaxes
containing the argument p typically return p = 1 and an empty
symbolic object T.

4-92

chol

• To check whether a matrix is Hermitian, use the operator ' (or its
functional form ctranspose). Matrix A is Hermitian if and only if A'=
A, where A' is the conjugate transpose of A.

Input
Arguments

A

Symbolic matrix.

’lower’

Flag that prompts chol to return a lower triangular matrix instead of
an upper triangular matrix.

’vector’

Flag that prompts chol to return the permutation information in
the form of a vector. To use this flag, you must specify three output
arguments.

’noCheck’

Flag that prompts chol to avoid checking whether matrix A is Hermitian
positive definite. Use this flag if A contains symbolic parameters, and
you want to avoid additional assumptions on these parameters.

’real’

Flag that prompts chol to use real arithmetic. Use this flag if A contains
symbolic parameters, and you want to avoid complex conjugates.

Output
Arguments

T

Upper triangular matrix, such that T'*T = A, or lower triangular
matrix, such that T*T' = A.

p

Value 0 if A is Hermitian positive definite or if you use 'noCheck'.

4-93

chol

If chol does not identify A as a Hermitian positive definite matrix, then
p is a positive integer. R is an upper triangular matrix of order q = p -
1, such that R'*R = A(1:q,1:q).

S

Permutation matrix.

s

Permutation vector.

Definitions Hermitian Positive Definite Matrix

A square complex matrix A is Hermitian positive definite if v'*A*v
is real and positive for all nonzero complex vectors v, where v' is the
conjugate transpose (Hermitian transpose) of v.

Cholesky Factorization of a Matrix

The Cholesky factorization of a Hermitian positive definite n-by-n
matrix A is defined by an upper or lower triangular matrix with positive
entries on the main diagonal. The Cholesky factorization of matrix A
can be defined as T'*T = A, where T is an upper triangular matrix.
Here T' is the conjugate transpose of T. The Cholesky factorization also
can be defined as T*T' = A, where T is a lower triangular matrix. T
is called the Cholesky factor of A.

Examples Compute the Cholesky factorization of the 3-by-3 Hilbert matrix.
Because these numbers are not symbolic objects, you get floating-point
results.

chol(hilb(3))

ans =
1.0000 0.5000 0.3333

0 0.2887 0.2887
0 0 0.0745

4-94

chol

Now convert this matrix to a symbolic object, and compute the Cholesky
factorization:

chol(sym(hilb(3)))

ans =
[1, 1/2, 1/3]
[0, 3^(1/2)/6, 3^(1/2)/6]
[0, 0, 5^(1/2)/30]

Compute the Cholesky factorization of the 3-by-3 Pascal matrix
returning a lower triangular matrix as a result:

chol(sym(pascal(3)), 'lower')

ans =
[1, 0, 0]
[1, 1, 0]
[1, 2, 1]

Try to compute the Cholesky factorization of this matrix. Because this
matrix is not Hermitian positive definite, chol used without output
arguments or with one output argument throws an error:

A = sym([1 1 1; 1 2 3; 1 3 5]);

T = chol(A)

Error using sym/chol (line 132)
Cannot prove that input matrix is Hermitian positive definite.
Define a Hermitian positive definite matrix by setting
appropriate assumptions on matrix components, or use 'noCheck'
to skip checking whether the matrix is Hermitian positive definite.

4-95

chol

To suppress the error, use two output arguments, T and p. If the matrix
is not recognized as Hermitian positive definite, then this syntax
assigns an empty symbolic object to T and the value 1 to p:

[T,p] = chol(A)

T =
[empty sym]

p =
1

For a Hermitian positive definite matrix, p is 0:

[T,p] = chol(sym(pascal(3)))

T =
[1, 1, 1]
[0, 1, 2]
[0, 0, 1]

p =
0

Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix
returning the permutation matrix:

A = sym(invhilb(3));
[T, p, S] = chol(A)

T =
[3, -12, 10]
[0, 4*3^(1/2), -5*3^(1/2)]
[0, 0, 5^(1/2)]

p =
0

4-96

chol

S =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix
returning the permutation information as a vector:

A = sym(invhilb(3));
[T, p, S] = chol(A, 'vector')

T =
[3, -12, 10]
[0, 4*3^(1/2), -5*3^(1/2)]
[0, 0, 5^(1/2)]

p =
0

S =
[1, 2, 3]

Compute the Cholesky factorization of matrix A containing symbolic
parameters. Without additional assumptions on the parameter a, this
matrix is not Hermitian:

syms a
A = [a 0; 0 a];
isAlways(A == A')

ans =
0 1
1 0

4-97

chol

By setting assumptions on a and b, you can define A to be Hermitian
positive definite. Therefore, you can compute the Cholesky factorization
of A:

assume(a > 0)
chol(A)

ans =
[a^(1/2), 0]
[0, a^(1/2)]

For further computations, remove the assumptions:

syms a clear

'noCheck' lets you skip checking whether A is a Hermitian positive
definite matrix. Thus, this flag lets you compute the Cholesky
factorization of a symbolic matrix without setting additional
assumptions on its components:

A = [a 0; 0 a];
chol(A,'noCheck')

ans =
[a^(1/2), 0]
[0, a^(1/2)]

If you use 'noCheck' for computing the Cholesky factorization of a
matrix that is not Hermitian positive definite, chol can return a matrix
T for which the identity T'*T = A does not hold:

T = chol(sym([1 1; 2 1]), 'noCheck')

T =
[1, 2]
[0, 3^(1/2)*i]

isAlways(A == T'*T)

4-98

chol

ans =
0 0
0 0

Compute the Cholesky factorization of this matrix. To skip checking
whether it is Hermitian positive definite, use 'noCheck'. By default,
chol computes a Hermitian factorization A = T'*T. Thus, the result
contains complex conjugates.

syms a b
A = [a b; b a];
T = chol(A, 'noCheck')

T =
[a^(1/2), conj(b)/conj(a^(1/2))]
[0, (a*abs(a) - abs(b)^2)^(1/2)/abs(a)^(1/2)]

To avoid complex conjugates in the result, use 'real':

T = chol(A, 'noCheck', 'real')

T =
[a^(1/2), b/a^(1/2)]
[0, ((a^2 - b^2)/a)^(1/2)]

When you use this flag, chol computes a symmetric factorization A =
T.'*T instead of a Hermitian factorization A = T'*T:

isAlways(A == T.'*T)

ans =
1 1
1 1

isAlways(A == T'*T)

ans =

4-99

chol

0 0
0 0

See Also chol | ctranspose | eig | isAlways | lu | svd | transpose
| vpalinalg::factorCholesky | linalg::isHermitian |
linalg::isPosDef

4-100

clear all

Purpose Remove items from MATLAB workspace and reset MuPAD engine

Syntax clear all

Description clear all clears all objects in the MATLAB workspace and closes the
MuPAD engine associated with the MATLAB workspace resetting all
its assumptions.

See Also reset

4-101

coeffs

Purpose List coefficients of multivariate polynomial

Syntax C = coeffs(p)
C = coeffs(p,x)
[C, T] = coeffs(p,x)

Description C = coeffs(p) returns the coefficients of the polynomial p with respect
to all the indeterminates of p.

C = coeffs(p,x) returns the coefficients of the polynomial p with
respect to x.

[C, T] = coeffs(p,x) returns a list of the coefficients and a list of
the terms of p. There is a one-to-one correspondence between the
coefficients and the terms of p. For multivariate polynomials, specify
x as a vector of indeterminates.

Examples List the coefficients of the following single-variable polynomial:

syms x
t = 16*log(x)^2 + 19*log(x) + 11;
coeffs(t)

The result is:

ans =
[11, 19, 16]

List the coefficients of the following polynomial with respect to the
indeterminate sin(x):

syms a b c x
y = a + b*sin(x) + c*sin(2*x);
coeffs(y, sin(x))

The result is:

4-102

coeffs

ans =
[a + c*sin(2*x), b]

List the coefficients of the following multivariable polynomial with
respect to all the indeterminates and with respect to the variable x only:

syms x y
z = 3*x^2*y^2 + 5*x*y^3;
coeffs(z)
coeffs(z,x)

The results are:

ans =
[5, 3]

ans =
[5*y^3, 3*y^2]

Display the list of the coefficients and the list of the terms of this
polynomial expression with respect to the variable x:

syms x y
z = 3*x^2*y^2 + 5*x*y^3;
[c,t] = coeffs(z, x)

The results are:

c =
[3*y^2, 5*y^3]

t =
[x^2, x]

Display the list of the coefficients and the list of the terms of this
polynomial expression with respect to x and y:

4-103

coeffs

[c,t] = coeffs(z, [x y])

The results are:

c =
[3, 5]

t =
[x^2*y^2, x*y^3]

See Also sym2poly

4-104

collect

Purpose Collect coefficients

Syntax R = collect(S)
R = collect(S,v)

Description R = collect(S) returns an array of collected polynomials for each
polynomial in the array S of polynomials.

R = collect(S,v) collects terms containing the variable v.

Examples The following statements

syms x y
R1 = collect((exp(x)+x)*(x+2))
R2 = collect((x+y)*(x^2+y^2+1), y)
R3 = collect([(x+1)*(y+1),x+y])

return

R1 =
x^2 + (exp(x) + 2)*x + 2*exp(x)

R2 =
y^3 + x*y^2 + (x^2 + 1)*y + x*(x^2 + 1)

R3 =
[(y + 1)*x + y + 1, x + y]

See Also expand | factor | horner | numden | rewrite | simplify |
simplifyFraction

4-105

colspace

Purpose Column space of matrix

Syntax B = colspace(A)

Description B = colspace(A) returns a matrix whose columns form a basis for the
column space of A. The matrix A can be symbolic or numeric.

Examples Find the basis for the column space of this matrix:

A = sym([2,0;3,4;0,5])
B = colspace(A)

The result is:

A =
[2, 0]
[3, 4]
[0, 5]

B =
[1, 0]
[0, 1]
[-15/8, 5/4]

See Also null | size

4-106

compose

Purpose Functional composition

Syntax compose(f,g)
compose(f,g,z)
compose(f,g,x,z)
compose(f,g,x,y,z)

Description compose(f,g) returns f(g(y)) where f = f(x) and g = g(y). Here x
is the symbolic variable of f as defined by symvar and y is the symbolic
variable of g as defined by symvar.

compose(f,g,z) returns f(g(z)) where f = f(x), g = g(y), and x
and y are the symbolic variables of f and g as defined by symvar.

compose(f,g,x,z) returns f(g(z)) and makes x the independent
variable for f. That is, if f = cos(x/t), then compose(f,g,x,z)
returns cos(g(z)/t)whereas compose(f,g,t,z) returns cos(x/g(z)).

compose(f,g,x,y,z) returns f(g(z)) and makes x the independent
variable for f and y the independent variable for g. For f = cos(x/t)
and g = sin(y/u), compose(f,g,x,y,z) returns cos(sin(z/u)/t)
whereas compose(f,g,x,u,z) returns cos(sin(y/z)/t).

Examples Suppose

syms x y z t u
f = 1/(1 + x^2); g = sin(y); h = x^t; p = exp(-y/u);

Then

a = compose(f,g)
b = compose(f,g,t)
c = compose(h,g,x,z)
d = compose(h,g,t,z)
e = compose(h,p,x,y,z)
f = compose(h,p,t,u,z)

returns:

4-107

compose

a =
1/(sin(y)^2 + 1)

b =
1/(sin(t)^2 + 1)

c =
sin(z)^t

d =
x^sin(z)

e =
exp(-z/u)^t

f =
x^exp(-y/z)

See Also finverse | subs | syms

4-108

cond

Purpose Condition number of matrix

Syntax cond(A)
cond(A,P)

Description cond(A) returns the 2-norm condition number of matrix A.

cond(A,P) returns the P-norm condition number of matrix A.

Tips • Calling cond for a numeric matrix that is not a symbolic object
invokes the MATLAB cond function.

Input
Arguments

A

Symbolic matrix.

P

One of these values 1, 2, inf, or 'fro'.

• cond(A,1) returns the 1-norm condition number.

• cond(A,2) or cond(A) returns the 2-norm condition number.

• cond(A,inf) returns the infinity norm condition number.

• cond(A,'fro') returns the Frobenius norm condition number.

Default: 2

Definitions Condition Number of a Matrix

Condition number of a matrix is the ratio of the largest singular value
of that matrix to the smallest singular value. The P-norm condition
number of the matrix A is defined as norm(A,P)*norm(inv(A),P),
where norm is the norm of the matrix A.

Examples Compute the 2-norm condition number of the inverse of the 3-by-3
magic square A:

4-109

cond

A = inv(sym(magic(3)));
condN2 = cond(A)

condN2 =
(5*3^(1/2))/2

Use vpa to approximate the result with 20-digit accuracy:

vpa(condN2, 20)

ans =
4.3301270189221932338

Compute the 1-norm condition number, the Frobenius condition
number, and the infinity condition number of the inverse of the 3-by-3
magic square A:

A = inv(sym(magic(3)));
condN1 = cond(A, 1)
condNf = cond(A, 'fro')
condNi = cond(A, inf)

condN1 =
16/3

condNf =
(285^(1/2)*391^(1/2))/60

condNi =
16/3

Use vpa to approximate these condition numbers with 20-digit accuracy:

vpa(condN1, 20)
vpa(condNf, 20)
vpa(condNi, 20)

4-110

cond

ans =
5.3333333333333333333

ans =
5.5636468855119361059

ans =
5.3333333333333333333

Compute the condition numbers of the 3-by-3 Hilbert matrix H
approximating the results with 30-digit accuracy:

H = sym(hilb(3));
condN2 = vpa(cond(H), 30)
condN1 = vpa(cond(H, 1), 30)
condNf = vpa(cond(H, 'fro'), 30)
condNi = vpa(cond(H, inf), 30)

condN2 =
524.056777586060817870782845928 +...
1.42681147881398269481283800423e-38*i

condN1 =
748.0

condNf =
526.158821079719236517033364845

condNi =
748.0

Hilbert matrices are classic examples of ill-conditioned matrices.

See Also equationsToMatrix | inv | linsolve | norm | rank

4-111

conj

Purpose Symbolic complex conjugate

Syntax conj(X)

Description conj(X) is the complex conjugate of X.

For a complex X, conj(X) = real(X) - i*imag(X).

See Also real | imag

4-112

cosint

Purpose Cosine integral

Syntax Y = cosint(X)

Description Y = cosint(X) evaluates the cosine integral function at the elements of
X, a numeric matrix, or a symbolic matrix. The cosine integral function
is defined by

Ci x x
t
t

dt
x

() ln()
cos

,= + + −∫
1

0

where is Euler’s constant 0.577215664...

Examples Compute cosine integral for a numerical value:

cosint(7.2)

The result is:

0.0960

Compute the cosine integral for [0:0.1:1] :

cosint([0:0.1:1])

The result is:

Columns 1 through 6

-Inf -1.7279 -1.0422 -0.6492 -0.3788 -0.1778

Columns 7 through 11

-0.0223 0.1005 0.1983 0.2761 0.3374

The statements

syms x

4-113

cosint

f = cosint(x);
diff(f)

return

cos(x)/x

See Also sinint

4-114

curl

Purpose Curl of vector field

Syntax curl(V,X)

Description curl(V,X) returns the curl of the vector field V with respect to the
vector X. The vector field V and the vector X are both three-dimensional.

Input
Arguments

V

Three-dimensional vector of symbolic expressions or symbolic functions.

X

Three-dimensional vector with respect to which you compute the curl.

Definitions Curl of a Vector Field

The curl of the vector field V = (V1, V2, V3) with respect to the vector
X = (X1, X2, X3) in Cartesian coordinates is the vector

curl V V

V
X

V
X

V
X

V
X

V
X

V
X

()

3

2

2

3

1

3

3

1

2

1

1

2

Examples Compute the curl of this vector field with respect to vector X = (x, y, z)
in Cartesian coordinates:

syms x y z
curl([x^3*y^2*z, y^3*z^2*x, z^3*x^2*y], [x, y, z])

ans =
x^2*z^3 - 2*x*y^3*z
x^3*y^2 - 2*x*y*z^3

4-115

curl

- 2*x^3*y*z + y^3*z^2

Compute the curl of the gradient of this scalar function. The curl of the
gradient of any scalar function is the vector of 0s:

syms x y z
f = x^2 + y^2 + z^2;
curl(gradient(f, [x, y, z]), [x, y, z])

ans =
0
0
0

The vector Laplacian of a vector field V is defined as:

 2V V V
Compute the vector Laplacian of this vector field using the curl,
divergence, and gradient functions:

syms x y z
V = [x^2*y, y^2*z, z^2*x];
gradient(divergence(V, [x, y, z])) - curl(curl(V,
[x, y, z]), [x, y, z])

ans =
2*y
2*z
2*x

See Also diff | divergence | gradient | jacobian | hessian | laplacian
| potential | vectorPotential

4-116

det

Purpose Compute determinant of symbolic matrix

Syntax r = det(A)

Description r = det(A) computes the determinant of A, where A is a symbolic or
numeric matrix. det(A) returns a symbolic expression for a symbolic A
and a numeric value for a numeric A.

Examples Compute the determinant of the following symbolic matrix:

syms a b c d
det([a, b; c, d])

The result is:

ans =
a*d - b*c

Compute the determinant of the following matrix containing the
symbolic numbers:

A = sym([2/3 1/3; 1 1])
r = det(A)

The result is:

A =
[2/3, 1/3]
[1, 1]

r =
1/3

See Also rank | eig

4-117

diag

Purpose Create or extract diagonals of symbolic matrices

Syntax diag(A,k)
diag(A)

Description diag(A,k) returns a square symbolic matrix of order n + abs(k), with
the elements of A on the k-th diagonal. A must present a row or column
vector with n components. The value k = 0 signifies the main diagonal.
The value k > 0 signifies the k-th diagonal above the main diagonal.
The value k < 0 signifies the k-th diagonal below the main diagonal.
If A is a square symbolic matrix, diag(A, k) returns a column vector
formed from the elements of the k-th diagonal of A.

diag(A), where A is a vector with n components, returns an n-by-n
diagonal matrix having A as its main diagonal. If A is a square symbolic
matrix, diag(A) returns the main diagonal of A.

Examples Create a symbolic matrix with the main diagonal presented by the
elements of the vector v:

syms a b c
v = [a b c];
diag(v)

The result is:

ans =
[a, 0, 0]
[0, b, 0]
[0, 0, c]

Create a symbolic matrix with the second diagonal below the main one
presented by the elements of the vector v:

syms a b c
v = [a b c];

4-118

diag

diag(v, -2)

The result is:

ans =
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[a, 0, 0, 0, 0]
[0, b, 0, 0, 0]
[0, 0, c, 0, 0]

Extract the main diagonal from a square matrix:

syms a b c x y z
A = [a, b, c; 1, 2, 3; x, y, z];
diag(A)

The result is

ans =
a
2
z

Extract the first diagonal above the main one:

syms a b c x y z
A = [a, b, c; 1, 2, 3; x, y, z];
diag(A, 1)

The result is:

ans =
b
3

4-119

diag

See Also tril | triu

4-120

diff

Purpose Differentiate symbolic expression

Syntax diff(expr)
diff(expr,v)
diff(expr, sym('v'))
diff(expr,n)
diff(expr,v,n)
diff(expr, n, v)

Description diff(expr) differentiates a symbolic expression expr with respect to
its free variable as determined by symvar.

diff(expr,v) and diff(expr, sym('v')) differentiate expr with
respect to v.

diff(expr,n) differentiates expr n times. n is a positive integer.

diff(expr,v,n) and diff(expr, n, v) differentiate expr with
respect to v n times.

Examples Differentiate the following single-variable expression one time:

syms x
diff(sin(x^2))

The result is

ans =
2*x*cos(x^2)

Differentiate the following single-variable expression six times:

syms t
diff(t^6,6)

The result is

ans =

4-121

diff

720

Differentiate the following expression with respect to t:

syms x t
diff(sin(x*t^2), t)

The result is

ans =
2*t*x*cos(t^2*x)

See Also int | jacobian | symvar

How To • “Differentiation” on page 2-3

4-122

digits

Purpose Variable-precision accuracy

Syntax digits
digits(d)
d = digits

Description digits specifies the minimum number of significant (nonzero) decimal
digits that MuPAD software uses to do variable-precision arithmetic
(VPA). The default value is 32 digits.

digits(d) sets the current VPA accuracy to at least d significant
(nonzero) decimal digits. The value d must be a positive integer larger

than 1 and smaller than 2 129 + .

d = digits returns the current VPA accuracy.

If the value d is not an integer, digits rounds it to the nearest integer.

Examples The digits function specifies the number of significant (nonzero) digits.
For example, use 4 significant digits to compute the ratio 1/3 and the
ratio 1/3000:

old = digits;
digits(4)
vpa(1/3)
vpa(1/3000)
digits(old)

ans =
0.3333

ans =
0.0003333

To change the VPA accuracy for one operation without changing the
current digits setting, use the vpa function. For example, compute the
ratio 1/3 with the default 32 digits, 10 digits, and 40 digits:

4-123

digits

vpa(1/3)
vpa(1/3, 10)
vpa(1/3, 40)

ans =
0.33333333333333333333333333333333

ans =
0.3333333333

ans =
0.33

The number of digits that you specify by the vpa function or the digits
function is the minimal number of digits. Internally, the toolbox can use
more digits than you specify. These additional digits are called guard
digits. For example, set the number of digits to 4, and then display the
floating-point approximation of 1/3 using 4 digits:

old = digits;
digits(4)
a = vpa(1/3)

a =
0.3333

Now, display a using 20 digits. The result shows that the toolbox
internally used more than 4 digits when computing a. The last digits in
the following result are incorrect because of the round-off error:

digits(20)
vpa(a)
digits(old)

ans =
0.33333333333303016843

4-124

digits

Hidden round-off errors can cause unexpected results. For example,
compute the number 1/10 with the default 32 digits accuracy and with
the 10 digits accuracy:

a = vpa(1/10)
old = digits;
digits(10)
b = vpa(1/10)
digits(old)

a =
0.1

b =
0.1

Now, compute the difference a - b. The result is not zero:

a - b

ans =
0.000000000000000000086736173798840354720600815844403

The difference a - b is not equal to zero because the toolbox
approximates the number b=0.1 with 32 digits. This approximation
produces round-off errors because the floating-point number 0.1 is
different from the rational number 1/10. When you compute the
difference a - b, the toolbox actually computes the difference as follows:

b = vpa(b)
a - b

b =
0.09999999999999999991326382620116

ans =
0.000000000000000000086736173798840354720600815844403

4-125

digits

Suppose, you convert a number to a symbolic object, and then perform
VPA operations on that object. The results can depend on the
conversion technique that you used to convert a floating-point number
to a symbolic object. The sym function lets you choose the conversion
technique by specifying the optional second argument, which can be
'r', 'f', 'd', or 'e'. The default is 'r'. For example, convert the
constant π=3.141592653589793... to a symbolic object:

r = sym(pi)
f = sym(pi, 'f')
d = sym(pi, 'd')
e = sym(pi, 'e')

r =
pi

f =
884279719003555/281474976710656

d =
3.1415926535897931159979634685442

e =
pi - (198*eps)/359

Set the number of digits to 4. Three of the four numeric approximations
give the same result:

digits(4)
vpa(r)
vpa(f)
vpa(d)
vpa(e)

ans =
3.142

4-126

digits

ans =
3.142

ans =
3.142

ans =
3.142 - 0.5515*eps

Now, set the number of digits to 40. The numeric approximation of
1/10 depends on the technique that you used to convert 1/10 to the
symbolic object:

digits(40)
vpa(r)
vpa(f)
vpa(d)
vpa(e)

ans =
3.141592653589793238462643383279502884197

ans =
3.141592653589793115997963468544185161591

ans =
3.1415926535897931159979634685442

ans =
3.141592653589793238462643383279502884197 -...
0.5515320334261838440111420612813370473538*eps

See Also double | vpa

How To • “Variable-Precision Arithmetic” on page 2-50

4-127

dirac

Purpose Dirac delta

Syntax dirac(x)

Description dirac(x) returns the Dirac delta function of x.

The Dirac delta function, dirac, has the value 0 for all x not equal to 0
and the value Inf for x = 0. Several Symbolic Math Toolbox functions
return answers in terms of dirac.

Examples dirac has the property that

dirac x a f x f a() * () ()− =
−∞

∞

∫

for any function f and real number a. For example:

syms x a
a = 5;
int(dirac(x-a)*sin(x),-inf, inf)

ans =
sin(5)

dirac also has the following relationship to the function heaviside:

syms x
diff(heaviside(x),x)

ans =
dirac(x)

See Also heaviside

4-128

divergence

Purpose Divergence of vector field

Syntax divergence(V,X)

Description divergence(V,X) returns the divergence of the vector field V with
respect to the vector X in Cartesian coordinates. Vectors V and X must
have the same length.

Input
Arguments

V

Vector of symbolic expressions or symbolic functions.

X

Vector with respect to which you compute the divergence.

Definitions Divergence of a Vector Field

The divergence of the vector field V = (V1,...,Vn) with respect to the
vector X = (X1,...,Xn) in Cartesian coordinates is the sum of partial
derivatives of V with respect to X1,...,Xn:

div V V
V
x

i

ii

n
()

1

Examples Compute the divergence of the vector field V(x, y, z) = (x, 2y2, 3z3) with
respect to vector X = (x, y, z) in Cartesian coordinates:

syms x y z
divergence([x, 2*y^2, 3*z^3], [x, y, z])

ans =
9*z^2 + 4*y + 1

Compute the divergence of the curl of this vector field. The divergence
of the curl of any vector field is 0.

4-129

divergence

syms x y z
divergence(curl([x, 2*y^2, 3*z^3], [x, y, z]), [x, y, z])

ans =
0

Compute the divergence of the gradient of this scalar function. The
result is the Laplacian of the scalar function:

syms x y z
f = x^2 + y^2 + z^2;
divergence(gradient(f, [x, y, z]), [x, y, z])

ans =
6

See Also curl | diff | gradient | jacobian | hessian | laplacian |
potential | vectorPotential

4-130

doc

Purpose Get help for MuPAD functions

Syntax doc(symengine)
doc(symengine,'MuPAD_function_name')

Description doc(symengine) opens “Getting Started with MuPAD”.

doc(symengine,'MuPAD_function_name') opens the documentation
page for MuPAD_function_name.

Examples doc(symengine,'simplify') opens the documentation page for the
MuPAD simplify function.

4-131

double

Purpose Convert symbolic matrix to MATLAB numeric form

Syntax r = double(S)

Description r = double(S) converts the symbolic object S to a numeric object r.

Tips • The working precision for double depends on the input argument. It
is also ultimately limited by 664 digits. If your computation requires
a larger working precision, specify the number of digits explicitly
using the digits function.

Input
Arguments

S

Symbolic constant, constant expression, or symbolic matrix whose
entries are constants or constant expressions.

Output
Arguments

r

If S is a symbolic constant or constant expression, r is a double-precision
floating-point number representing the value of S. If S is a symbolic
matrix whose entries are constants or constant expressions, r is a
matrix of double precision floating-point numbers representing the
values of the entries of S.

Examples Find the numeric value for the expression
1 5

2
+

:

double(sym('(1+sqrt(5))/2')))

1.6180

Find the numeric value for the entries of this matrix T:

a = sym(2*sqrt(2));
b = sym((1-sqrt(3))^2);
T = [a, b; a*b, b/a];

4-132

double

double(T)

ans =
2.8284 0.5359
1.5157 0.1895

Find the numeric value for this expression. By default, double uses a
new upper limit of 664 digits for the working precision and returns
the value 0:

x = sym('((exp(200) + 1)/(exp(200) - 1)) - 1');
double(x)

ans =
0

To get a more accurate result, increase the precision of computations:

digits(1000);
double(x)

ans =
2.7678e-87

See Also sym | vpa

4-133

dsolve

Purpose Ordinary differential equation and system solver

Syntax S = dsolve(eqn)
S = dsolve(eqn,cond)
S = dsolve(eqn,cond,Name,Value)
Y = dsolve(eqns)
Y = dsolve(eqns,conds)
Y = dsolve(eqns,conds,Name,Value)
[y1,...,yN] = dsolve(eqns)
[y1,...,yN] = dsolve(eqns,conds)
[y1,...,yN] = dsolve(eqns,conds,Name,Value)

Description S = dsolve(eqn) solves the ordinary differential equation eqn. Here
eqn is a symbolic equation containing diff to indicate derivatives.
Alternatively, you can use a string with the letter D indicating
derivatives. For example, syms y(x); dsolve(diff(y) == y + 1)
and dsolve('Dy = y + 1','x') both solve the equation dy/dx = y
+ 1 with respect to the variable x. Also, eqn can be an array of such
equations or strings.

S = dsolve(eqn,cond) solves the ordinary differential equation eqn
with the initial or boundary condition cond.

S = dsolve(eqn,cond,Name,Value) uses additional options specified
by one or more Name,Value pair arguments.

Y = dsolve(eqns) solves the system of ordinary differential equations
eqns and returns a structure array that contains the solutions. The
number of fields in the structure array corresponds to the number of
independent variables in the system.

Y = dsolve(eqns,conds) solves the system of ordinary differential
equations eqns with the initial or boundary conditions conds.

Y = dsolve(eqns,conds,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

[y1,...,yN] = dsolve(eqns) solves the system of ordinary
differential equations eqns and assigns the solutions to the variables
y1,...,yN.

4-134

dsolve

[y1,...,yN] = dsolve(eqns,conds) solves the system of ordinary
differential equations eqns with the initial or boundary conditions
conds.

[y1,...,yN] = dsolve(eqns,conds,Name,Value) uses additional
options specified by one or more Name,Value pair arguments.

Tips • The names of symbolic variables used in differential equations
should not contain the letter D because dsolve assumes that D is a
differential operator and any character immediately following D is a
dependent variable.

• If dsolve cannot find a closed-form (explicit) solution, it attempts to
find an implicit solution. When dsolve returns an implicit solution,
it issues this warning:

Warning: Explicit solution could not be found;
implicit solution returned.

• If dsolve can find neither an explicit nor an implicit solution, then
it issues a warning and returns the empty sym. In this case, try to
find a numeric solution using the MATLAB ode23 or ode45 function.
In some cases, the output is an equivalent lower-order differential
equation or an integral.

Input
Arguments

eqn

Symbolic equation, string representing an ordinary differential
equation, or array of symbolic equations or strings.

When representing eqn as a symbolic equation, you must create a
symbolic function, for example y(x). Here x is an independent variable
for which you solve an ordinary differential equation. Use the ==
operator to create an equation. Use the diff function to indicate
differentiation. For example, to solve d2y(x)/dx2 = x*y(x), enter:

syms y(x)
dsolve(diff(y, 2) == x*y)

4-135

dsolve

When representing eqn as a string, use the letter D to indicate
differentiation. By default, dsolve assumes that the independent
variable is t. Thus, Dy means dy/dt. You can specify the independent
variable. The letter D followed by a digit indicates repeated
differentiation. Any character immediately following a differentiation
operator is a dependent variable. For example, to solve y''(x) =
x*y(x), enter:

dsolve('D2y = x*y','x')

or

dsolve('D2y == x*y','x')

cond

Equation or string representing an initial or boundary condition. If
you use equations, assign expressions with diff to some intermediate
variables. For example, use Dy, D2y, and so on as intermediate variables:

Dy = diff(y);
D2y = diff(y, 2);

Then define initial conditions using symbolic equations, such as y(a)
== b and Dy(a) == b. Here a and b are constants.

If you represent initial and boundary conditions as strings, you do not
need to create intermediate variables. In this case, follow the same
rules as you do when creating an equation eqn as a string. For example,
specify 'y(a) = b' and 'Dy(a) = b'. When using strings, you can
use = or == in equations.

eqns

Symbolic equations or strings separated by commas and representing
a system of ordinary differential equations. Each equation or string
represents an ordinary differential equation.

conds

4-136

dsolve

Symbolic equations or strings separated by commas and representing
initial or boundary conditions or both types of conditions. Each equation
or string represents an initial or boundary condition. If the number of
the specified conditions is less than the number of dependent variables,
the resulting solutions contain arbitrary constants C1, C2,....

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’IgnoreAnalyticConstraints’

By default, the solver applies the purely algebraic simplifications
to the expressions on both sides of equations. These simplifications
might not be generally valid. Therefore, by default the solver does not
guarantee general correctness and completeness of the results. To
solve ordinary differential equations without additional assumptions,
set IgnoreAnalyticConstraints to false. The results obtained with
IgnoreAnalyticConstraints set to false are correct for all values of
the arguments.

If you do not set IgnoreAnalyticConstraints to false, always verify
results returned by the dsolve command.

Default: true

’MaxDegree’

Do not use explicit formulas that involve radicals when solving
polynomial equations of degrees larger than the specified value. This
value must be a positive integer smaller than 5.

Default: 2

4-137

dsolve

Output
Arguments

S

Symbolic array that contains solutions of an equation. The size of a
symbolic array corresponds to the number of the solutions.

Y

Structure array that contains solutions of a system of equations. The
number of fields in the structure array corresponds to the number of
independent variables in a system.

y1,...,yN

Variables to which the solver assigns the solutions of a system of
equations. The number of output variables or symbolic arrays must
equal the number of independent variables in a system. The toolbox
sorts independent variables alphabetically, and then assigns the
solutions for these variables to output variables or symbolic arrays.

Examples Solve these ordinary differential equations. Use == to create an
equation, and diff to indicate differentiation:

syms a x(t)
dsolve(diff(x) == -a*x)

ans =
C2*exp(-a*t)

syms f(t)
dsolve(diff(f) == f + sin(t))

ans =
C4*exp(t) - sin(t)/2 - cos(t)/2

Solve this ordinary differential equation with the initial condition
y(0) = b:

syms a b y(t)

4-138

dsolve

dsolve(diff(y) == a*y, y(0) == b)

Specifying the initial condition lets you eliminate arbitrary constants,
such as C1, C2,...:

ans =
b*exp(a*t)

Solve this ordinary differential equation with the initial and boundary
conditions. To specify a condition that contains a derivative, assign
the derivative to a variable:

syms a y(t)
Dy = diff(y);
dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0)

Because the equation contains the second-order derivative d2y/dt2,
specifying two conditions lets you eliminate arbitrary constants in the
solution:

ans =
exp(-a*t*i)/2 + exp(a*t*i)/2

Solve this system of ordinary differential equations:

syms x(t) y(t)
z = dsolve(diff(x) == y, diff(y) == -x)

When you assign the solution of a system of equations to a single
output, dsolve returns a structure containing the solutions:

z =
y: [1x1 sym]
x: [1x1 sym]

To see the results, enter z.x and z.y:

z.x

4-139

dsolve

ans =
C12*cos(t) + C11*sin(t)

z.y

ans =
C11*cos(t) - C12*sin(t)

By default, the solver applies a set of purely algebraic simplifications
that are not correct in general, but that can produce simple and
practical solutions:

syms y(t)
dsolve(diff(y) == 1/sqrt(y), y(0) == 1)

ans =
((3*t)/2 + 1)^(2/3)

To obtain complete and generally correct solutions, set the value of
IgnoreAnalyticConstraints to false:

dsolve(diff(y) == 1/sqrt(y), y(0) == 1,
'IgnoreAnalyticConstraints', false)

Warning: Explicit solution could not be found;
implicit solution returned.
Warning: The solutions are parametrized by the symbols:
l = Z_ intersect Dom::Interval([-(3*(PI/2 - angle(C19 + t)/3))/(2*PI)],..
(3*(PI/2 + angle(C19 + t)/3))/(2*PI)) intersect...
solve([C21 in Dom::Interval([-(2*(PI/2 - (3*angle(exp((4*PI*X319*I)/3)))/
(2*(PI/2 + (3*angle(exp((4*PI*X319*I)/3)))/4))/(3*PI)), C21 in Z_], X319,

ans =
exp(-(pi*l*4*i)/3)*((3*t)/2 +
exp(-C21*pi*3*i)*exp((pi*l*4*i)/3)^(3/2))^(2/3)

4-140

dsolve

If you apply algebraic simplifications, you can get explicit solutions for
some equations for which the solver cannot compute them using strict
mathematical rules:

syms y(t)
dsolve(sqrt(diff(y)) == sqrt(y) + 1/y)

ans =
((3^(1/2)*i)/2 + 1/2)^2
((3^(1/2)*i)/2 - 1/2)^2

versus

dsolve(sqrt(diff(y)) == sqrt(y) + 1/y,
'IgnoreAnalyticConstraints', false)

Warning: Explicit solution could not be found;
implicit solution returned.

ans =
solve(signIm(((y(t)^(3/2) + 1)*i)/y(t)) == 1, y(t)) intersect...
Dom::ImageSet(exp(pi*l*(-(4*i)/3))*(exp((3*C28)/2 +...
(3*t)/2)*exp(wrightOmega(- (3*C28)/2 + pi*i -...
(3*t)/2)) - 1)^(2/3), l, Z_ intersect...
Dom::Interval([-(3*(pi/2 - angle(exp((3*C28)/2 +...
(3*t)/2)*exp(wrightOmega(- (3*C28)/2 + pi*i -...
(3*t)/2)) - 1)/3))/(2*pi)], (3*(pi/2 + angle(exp((3*C28)/2 +...
(3*t)/2)*exp(wrightOmega(- (3*C28)/2 + pi*i -
(3*t)/2)) - 1)/3))/(2*pi)))

When you solve a higher-order polynomial equation, the solver
sometimes uses RootOf to return the results:

syms a y(x)
dsolve(diff(y) == a/(y^2 + 1))

4-141

dsolve

Warning: Explicit solution could not be found;
implicit solution returned.

ans =
RootOf(z^3 + 3*z - 3*a*x - 3*C32, z)

To get an explicit solution for such equations, try calling the solver with
MaxDegree. The option specifies the maximum degree of polynomials for
which the solver tries to return explicit solutions. The default value is 2.
By increasing this value, you can get explicit solutions for higher-order
polynomials. For example, increase the value of MaxDegree to 4 and get
explicit solutions instead of RootOf for this equation:

4-142

dsolve

s = dsolve(diff(y) == a/(y^2 + 1), 'MaxDegree', 4);
pretty(s)

+- -+
| 1 |
| #1 - -- |
| #1 |
| |
| 1/2 / 1 \ |
| 3 | -- + #1 | i |
| 1 #1 \ #1 / |
| ---- - -- + ------------------ |
| 2 #1 2 2 |
| |
| 1/2 / 1 \ |
| 3 | -- + #1 | i |
| 1 #1 \ #1 / |
| ---- - -- - ------------------ |
| 2 #1 2 2 |
+- -+

where

/ / 2 \1/2 \1/3
| 3 C36 3 a x | 9 (C36 + a x) | |

#1 == | ----- + ----- + | -------------- + 1 | |
\ 2 2 \ 4 / /

If dsolve can find neither an explicit nor an implicit solution, then it
issues a warning and returns the empty sym:

syms y(x)
dsolve(exp(diff(y)) == 0)

Warning: Explicit solution could not be found.

4-143

dsolve

ans =
[empty sym]

Returning the empty symbolic object does not prove that there are no
solutions.

Solve this equation specifying it as a string. By default, dsolve assumes
that the independent variable is t:

dsolve('Dy^2 + y^2 == 1')

ans =
1

-1
cosh(C45 + t*i)
cosh(C41 - t*i)

Now solve this equation with respect to the variable s:

dsolve('Dy^2 + y^2 == 1','s')

ans =
1

-1
cosh(C53 + s*i)
cosh(C49 - s*i)

Algorithms If you do not set the value of IgnoreAnalyticConstraints to false, the
solver applies these rules to the expressions on both sides of an equation:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the
following equality is valid for all values of a, b, and c:

(a·b)c = ac·bc.

• log(ab) = b·log(a) for all values of a and b. In particular, the following
equality is valid for all values of a, b, and c:

(ab)c = ab·c.

4-144

dsolve

• If f and g are standard mathematical functions and f(g(x)) = x for
all small positive numbers, f(g(x)) = x is assumed to be valid for all
complex x. In particular:

- log(ex) = x

- asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x

- asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x

- Wk(x·e
x) = x for all values of k

• The solver can multiply both sides of an equation by any expression
except 0.

• The solutions of polynomial equations must be complete.

See Also ode23 | ode45 | odeToVectorField | solve | syms

How To • “Solve a Single Differential Equation” on page 2-88

• “Solve a System of Differential Equations” on page 2-92

4-145

ei

Purpose One-argument exponential integral function

Syntax ei(x)

Description ei(x) returns the one-argument exponential integral defined as follows:

ei x
e
t

dt
tx

Tips • The one-argument exponential integral is singular at x = 0. The
toolbox uses this special value: ei(0) = Inf.

Input
Arguments

x - Input
floating-point number | symbolic number | symbolic variable | symbolic
expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a floating-point or symbolic number, variable,
expression, function, vector, or matrix.

Examples Exponential Integral for Floating-Point and Symbolic
Numbers

Compute the exponential integrals for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

s = [ei(-2), ei(-1/2), ei(1), ei(sqrt(2))]

s =
-0.0489 -0.5598 1.8951 3.0485

Compute the exponential integrals for the same numbers converted
to symbolic objects. For most symbolic (exact) numbers, ei returns
unresolved symbolic calls.

s = [ei(sym(-2)), ei(sym(-1/2)), ei(sym(1)),
ei(sqrt(sym(2)))]

4-146

ei

s =
[ei(-2), ei(-1/2), ei(1), ei(2^(1/2))]

Use vpa to approximate this result with the 10 digits accuracy:

vpa(s, 10)

ans =
[-0.04890051071, -0.5597735948, 1.895117816, 3.048462479]

Branch Cut at the Negative Real Axis

Compute the exponential integrals for these numbers. The negative
real axis is a branch cut. The exponential integral has a jump of height
2πi when crossing this cut:

[ei(-1), ei(-1 + 10^(-10)*i), ei(-1 - 10^(-10)*i)]

ans =
-0.2194 + 0.0000i -0.2194 + 3.1416i -0.2194 - 3.1416i

Derivatives of the Exponential Integral

Compute the first, second, and third derivatives of the one-argument
exponential integral:

syms x
diff(ei(x), x)
diff(ei(x), x, 2)
diff(ei(x), x, 3)

ans =
exp(x)/x

ans =
exp(x)/x - exp(x)/x^2

ans =
exp(x)/x - (2*exp(x))/x^2 + (2*exp(x))/x^3

4-147

ei

Limits of the Exponential Integral

Compute the limits of this one-argument exponential integral:

syms x
limit(ei(2*x^2/(1+x)), x, -Inf)
limit(ei(2*x^2/(1+x)), x, 0)
limit(ei(2*x^2/(1+x)), x, Inf)

ans =
0

ans =
-Inf

ans =
Inf

References
[1] Gautschi, W., and W. F. Gahill “Exponential Integral and Related
Functions.” Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also expint | expintEi | int | vpa

4-148

eig

Purpose Eigenvalues and eigenvectors of symbolic matrix

Syntax lambda = eig(A)
[V,D] = eig(A)
[V,D,P] = eig(A)
lambda = eig(vpa(A))
[V,D] = eig(vpa(A))

Description lambda = eig(A) returns a symbolic vector containing the eigenvalues
of the square symbolic matrix A.

[V,D] = eig(A) returns matrices V and D. The columns of V present
eigenvectors of A. The diagonal matrix D contains eigenvalues. If the
resulting V has the same size as A, the matrix A has a full set of linearly
independent eigenvectors that satisfy A*V = V*D.

[V,D,P] = eig(A) returns a vector of indices P. The length of P equals
to the total number of linearly independent eigenvectors, so that A*V
= V*D(P,P).

lambda = eig(vpa(A)) returns numeric eigenvalues using
variable-precision arithmetic.

[V,D] = eig(vpa(A)) returns numeric eigenvectors using
variable-precision arithmetic. If A does not have a full set of
eigenvectors, the columns of V are not linearly independent.

Examples Compute the eigenvalues for the magic square of order 5:

M = sym(magic(5));
eig(M)

The result is:

ans =
65

(625/2 - (5*3145^(1/2))/2)^(1/2)
((5*3145^(1/2))/2 + 625/2)^(1/2)

-(625/2 - (5*3145^(1/2))/2)^(1/2)

4-149

eig

-((5*3145^(1/2))/2 + 625/2)^(1/2)

Compute the eigenvalues for the magic square of order 5 using
variable-precision arithmetic:

M = sym(magic(5));
eig(vpa(M))

The result is:

ans =
65.0

21.27676547147379553062642669797423
13.12628093070921880252564308594914
-13.126280930709218802525643085949
-21.276765471473795530626426697974

Compute the eigenvalues and eigenvectors for one of the MATLAB test
matrices:

A = sym(gallery(5))
[v, lambda] = eig(A)

The results are:

A =
[-9, 11, -21, 63, -252]
[70, -69, 141, -421, 1684]
[-575, 575, -1149, 3451, -13801]
[3891, -3891, 7782, -23345, 93365]
[1024, -1024, 2048, -6144, 24572]

v =
0

21/256
-71/128

4-150

eig

973/256
1

lambda =
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]

See Also charpoly | jordan | svd | vpa

How To • “Eigenvalues” on page 2-64

4-151

ellipke

Purpose Complete elliptic integrals of the first and second kinds

Syntax [K,E] = ellipke(m)

Description [K,E] = ellipke(m) returns the complete elliptic integrals of the first
and second kinds.

Tips • Calling ellipke for numbers that are not symbolic objects invokes
the MATLAB ellipke function. This function accepts only 0 <= x
<= 1. To compute the complete elliptic integrals of the first and
second kinds for the values out of this range, use sym to convert
the numbers to symbolic objects, and then call ellipke for those
symbolic objects. Alternatively, use the ellipticK and ellipticE
functions to compute the integrals separately.

• For most symbolic (exact) numbers, ellipke returns results using
the ellipticK and ellipticE functions. You can approximate such
results with floating-point numbers using vpa.

• If m is a vector or a matrix, then [K,E] = ellipke(m) returns the
complete elliptic integrals of the first and second kinds, evaluated for
each element of m.

Input
Arguments

m

Symbolic number, variable, expression, or function. This argument also
can be a vector or matrix of symbolic numbers, variables, expressions,
or functions.

Output
Arguments

K

Complete elliptic integral of the first kind.

E

Complete elliptic integral of the second kind.

4-152

ellipke

Definitions Complete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

K m F m
m

d

2
1

1 2
0

2

|
sin

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

Complete Elliptic Integral of the Second Kind

The complete elliptic integral of the second kind is defined as follows:

E m E m m d

2
1 2

0

2

| sin

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

Examples Compute the complete elliptic integrals of the first and second kinds for
these numbers. Because these numbers are not symbolic objects, you
get floating-point results.

[K0, E0] = ellipke(0)
[K05, E05] = ellipke(1/2)

K0 =
1.5708

E0 =
1.5708

K05 =
1.8541

E05 =

4-153

ellipke

1.3506

Compute the complete elliptic integrals for the same numbers converted
to symbolic objects. For most symbolic (exact) numbers, ellipke
returns results using the ellipticK and ellipticE functions.

[K0, E0] = ellipke(sym(0))
[K05, E05] = ellipke(sym(1/2))

K0 =
pi/2

E0 =
pi/2

K05 =
ellipticK(1/2)

E05 =
ellipticE(1/2)

Use vpa to approximate K05 and E05 with floating-point numbers:

vpa([K05, E05], 10)

ans =
[1.854074677, 1.350643881]

If the argument does not belong to the range from 0 to 1, then convert
that argument to a symbolic object before using ellipke:

[K, E] = ellipke(sym(pi/2))

K =
ellipticK(pi/2)

E =

4-154

ellipke

ellipticE(pi/2)

Alternatively, use ellipticK and ellipticE to compute the integrals
of the first and the second kinds separately:

K = ellipticK(sym(pi/2))
E = ellipticE(sym(pi/2))

K =
ellipticK(pi/2)

E =
ellipticE(pi/2)

Call ellipke for this symbolic matrix. When the input argument is a
matrix, ellipke computes the complete elliptic integrals of the first
and second kinds for each element.

[K, E] = ellipke(sym([-1 0; 1/2 1]))

K =
[ellipticK(-1), pi/2]
[ellipticK(1/2), Inf]

E =
[ellipticE(-1), pi/2]
[ellipticE(1/2), 1]

References [1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

Alternatives You can use ellipticK and ellipticE to compute elliptic integrals of
the first and second kinds separately.

See Also ellipke | ellipticE | ellipticKellipticE | ellipticK | vpa

4-155

ellipticCE

Purpose Complementary complete elliptic integral of the second kind

Syntax ellipticCE(m)

Description ellipticCE(m) returns the complementary complete elliptic integral
of the second kind.

Tips • ellipticCE returns floating-point results for numeric arguments
that are not symbolic objects.

• For most symbolic (exact) numbers, ellipticCE returns unresolved
symbolic calls. You can approximate such results with floating-point
numbers using vpa.

• If m is a vector or a matrix, then ellipticCE(m) returns the
complementary complete elliptic integral of the second kind,
evaluated for each element of m.

Input
Arguments

m

Number, symbolic number, variable, expression, or function. This
argument also can be a vector or matrix of numbers, symbolic numbers,
variables, expressions, or functions.

Definitions Complementary Complete Elliptic Integral of the Second Kind

The complementary complete elliptic integral of the second kind is
defined as E’(m) = E(1–m), where E(m) is the complete elliptic integral
of the second kind:

E m E m m d

2
1 2

0

2

| sin

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

4-156

ellipticCE

Examples Compute the complementary complete elliptic integrals of the second
kind for these numbers. Because these numbers are not symbolic
objects, you get floating-point results.

s = [ellipticCE(0), ellipticCE(pi/4), ellipticCE(1),
ellipticCE(pi/2)]

s =
1.0000 1.4828 1.5708 1.7753

Compute the complementary complete elliptic integrals of the second
kind for the same numbers converted to symbolic objects. For most
symbolic (exact) numbers, ellipticCE returns unresolved symbolic
calls.

s = [ellipticCE(sym(0)), ellipticCE(sym(pi/4)),
ellipticCE(sym(1)), ellipticCE(sym(pi/2))]

s =
[1, ellipticCE(pi/4), pi/2, ellipticCE(pi/2)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[1.0, 1.482786927, 1.570796327, 1.775344699]

Differentiate these expressions involving the complementary complete
elliptic integral of the second kind:

syms m
diff(ellipticCE(m))
diff(ellipticCE(m^2), m, 2)

ans =
ellipticCE(m)/(2*m - 2) - ellipticCK(m)/(2*m - 2)

4-157

ellipticCE

ans =
(2*ellipticCE(m^2))/(2*m^2 - 2) -...
(2*ellipticCK(m^2))/(2*m^2 - 2) +...
2*m*(((2*m*ellipticCK(m^2))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m*(m^2 - 1)))/(2*m^2 - 2) +...
(2*m*(ellipticCE(m^2)/(2*m^2 - 2) -...
ellipticCK(m^2)/(2*m^2 - 2)))/(2*m^2 - 2) -...
(4*m*ellipticCE(m^2))/(2*m^2 - 2)^2 +...
(4*m*ellipticCK(m^2))/(2*m^2 - 2)^2)

Here, ellipticCK represents the complementary complete elliptic
integral of the first kind.

Plot the complementary complete elliptic integral of the second kind:

syms m
ezplot(ellipticCE(m))
hold on

colormap([0 0 1])
title('Complementary complete elliptic integral of the second kind')
xlabel('m')
ylabel('ellipticCE(m)')
grid
hold off

4-158

ellipticCE

Call ellipticCE for this symbolic matrix. When the input argument is
a matrix, ellipticCE computes the complementary complete elliptic
integral of the second kind for each element.

ellipticCE(sym([pi/6 pi/4; pi/3 pi/2]))

ans =
[ellipticCE(pi/6), ellipticCE(pi/4)]
[ellipticCE(pi/3), ellipticCE(pi/2)]

4-159

ellipticCE

References [1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also ellipke | ellipticCK | ellipticCPi | ellipticE | ellipticK
| ellipticF | ellipticPiellipticCE | vpa

4-160

ellipticCK

Purpose Complementary complete elliptic integral of the first kind

Syntax ellipticCK(m)

Description ellipticCK(m) returns the complementary complete elliptic integral
of the first kind.

Tips • ellipticK returns floating-point results for numeric arguments that
are not symbolic objects.

• For most symbolic (exact) numbers, ellipticCK returns unresolved
symbolic calls. You can approximate such results with floating-point
numbers using the vpa function.

• If m is a vector or a matrix, then ellipticCK(m) returns the
complementary complete elliptic integral of the first kind, evaluated
for each element of m.

Input
Arguments

m

Number, symbolic number, variable, expression, or function. This
argument also can be a vector or matrix of numbers, symbolic numbers,
variables, expressions, or functions.

Definitions Complementary Complete Elliptic Integral of the First Kind

The complementary complete elliptic integral of the first kind is defined
as K’(m) = K(1–m), where K(m) is the complete elliptic integral of the
first kind:

K m F m
m

d

2
1

1 2
0

2

|
sin

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

4-161

ellipticCK

Examples Compute the complementary complete elliptic integrals of the first kind
for these numbers. Because these numbers are not symbolic objects, you
get floating-point results.

s = [ellipticCK(1/2), ellipticCK(pi/4), ellipticCK(1),
ellipticCK(inf)]

s =
1.8541 1.6671 1.5708 NaN

Compute the complete elliptic integrals of the first kind for the same
numbers converted to symbolic objects. For most symbolic (exact)
numbers, ellipticCK returns unresolved symbolic calls.

s = [ellipticCK(sym(1/2)), ellipticCK(sym(pi/4)),
ellipticCK(sym(1)), ellipticCK(sym(inf))]

s =
[ellipticCK(1/2), ellipticCK(pi/4), pi/2, ellipticCK(Inf)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[1.854074677, 1.667061338, 1.570796327, NaN]

Differentiate these expressions involving the complementary complete
elliptic integral of the first kind:

syms m
diff(ellipticCK(m))
diff(ellipticCK(m^2), m, 2)

ans =
ellipticCE(m)/(2*m*(m - 1)) - ellipticCK(m)/(2*m - 2)

ans =

4-162

ellipticCK

(2*(ellipticCE(m^2)/(2*m^2 - 2) -...
ellipticCK(m^2)/(2*m^2 - 2)))/(m^2 - 1) -...
(2*ellipticCE(m^2))/(m^2 - 1)^2 -...
(2*ellipticCK(m^2))/(2*m^2 - 2) +...
(8*m^2*ellipticCK(m^2))/(2*m^2 - 2)^2 +...
(2*m*((2*m*ellipticCK(m^2))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m*(m^2 - 1))))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m^2*(m^2 - 1))

Here, ellipticCE represents the complementary complete elliptic
integral of the second kind.

Plot the complementary complete elliptic integral of the first kind:

syms m
ezplot(ellipticCK(m), [0.1, 5])
hold on

colormap([0 0 1])
title('Complementary complete elliptic integral of the first kind')
xlabel('m')
ylabel('ellipticCK(m)')
grid
hold off

4-163

ellipticCK

Call ellipticCK for this symbolic matrix. When the input argument is
a matrix, ellipticCK computes the complementary complete elliptic
integral of the first kind for each element.

ellipticCK(sym([pi/6 pi/4; pi/3 pi/2]))

ans =
[ellipticCK(pi/6), ellipticCK(pi/4)]
[ellipticCK(pi/3), ellipticCK(pi/2)]

4-164

ellipticCK

References [1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also ellipke | ellipticCE | ellipticCPi | ellipticE | ellipticK
| ellipticF | ellipticPiellipticCK | vpa

4-165

ellipticCPi

Purpose Complementary complete elliptic integral of the third kind

Syntax ellipticCPi(n,m)

Description ellipticCPi(n,m) returns the complementary complete elliptic
integral of the third kind.

Tips • ellipticCPi returns floating-point results for numeric arguments
that are not symbolic objects.

• For most symbolic (exact) numbers, ellipticCPi returns unresolved
symbolic calls. You can approximate such results with floating-point
numbers using vpa.

• If one input argument is a scalar and the other one is a vector or a
matrix, then ellipticCPi expands the scalar into a vector or matrix
of the same size as the other argument with all elements equal to
that scalar.

Input
Arguments

n

Number, symbolic number, variable, expression, or function specifying
the characteristic. This argument also can be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

m

Number, symbolic number, variable, expression, or function specifying
the parameter. This argument also can be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

Definitions Complementary Complete Elliptic Integral of the Third Kind

The complementary complete elliptic integral of the third kind is
defined as Π’(m) = Π(n, 1–m), where Π(n,m) is the complete elliptic
integral of the third kind:

4-166

ellipticCPi

 n m n m
n m

d, ; |
sin sin

2
1

1 12 2
0

2

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

Examples Compute the complementary complete elliptic integrals of the third
kind for these numbers. Because these numbers are not symbolic
objects, you get floating-point results.

s = [ellipticCPi(-1, 1/3), ellipticCPi(0, 1/2),
ellipticCPi(9/10, 1), ellipticCPi(-1, 0)]

s =
1.3703 1.8541 4.9673 Inf

Compute the complementary complete elliptic integrals of the third kind
for the same numbers converted to symbolic objects. For most symbolic
(exact) numbers, ellipticCPi returns unresolved symbolic calls.

s = [ellipticCPi(-1, sym(1/3)), ellipticCPi(sym(0), 1/2),
ellipticCPi(sym(9/10), 1), ellipticCPi(-1, sym(0))]

s =
[ellipticCPi(-1, 1/3), ellipticCK(1/2),
(pi*10^(1/2))/2, Inf]

Here, ellipticCK represents the complementary complete elliptic
integrals of the first kind.

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[1.370337322, 1.854074677, 4.967294133, Inf]

4-167

ellipticCPi

Differentiate these expressions involving the complementary complete
elliptic integral of the third kind:

syms n m
diff(ellipticCPi(n, m), n)
diff(ellipticCPi(n, m), m)

ans =
ellipticCK(m)/(2*n*(n - 1)) -...
ellipticCE(m)/(2*(n - 1)*(m + n - 1)) -...
(ellipticCPi(n, m)*(n^2 + m - 1))/(2*n*(n - 1)*(m + n - 1))

ans =
ellipticCE(m)/(2*m*(m + n - 1)) - ellipticCPi(n,
m)/(2*(m + n - 1))

Here, ellipticCK and ellipticCE represent the complementary
complete elliptic integrals of the first and second kinds.

References [1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also ellipke | ellipticCE | ellipticCK | ellipticE | ellipticK |
ellipticF | ellipticPiellipticCPi | vpa

4-168

ellipticE

Purpose Elliptic integral of the second kind

Syntax ellipticE(m)
ellipticE(phi,m)

Description ellipticE(m) returns the complete elliptic integral of the second kind.

ellipticE(phi,m) returns the incomplete elliptic integral of the second
kind.

Tips • ellipticE returns floating-point results for numeric arguments that
are not symbolic objects.

• For most symbolic (exact) numbers, ellipticE returns unresolved
symbolic calls. You can approximate such results with floating-point
numbers using vpa.

• If m is a vector or a matrix, then ellipticE(m) returns the complete
elliptic integral of the second kind, evaluated for each element of m.

• If one input argument is a scalar and the other one is a vector or a
matrix, then ellipticE expands the scalar into a vector or matrix
of the same size as the other argument with all elements equal to
that scalar.

• ellipticE(pi/2, m) = ellipticE(m).

Input
Arguments

m

Number, symbolic number, variable, expression, or function specifying
the parameter. This argument also can be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

phi

Number, symbolic number, variable, expression, or function specifying
the amplitude. This argument also can be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

4-169

ellipticE

Definitions Incomplete Elliptic Integral of the Second Kind

The incomplete elliptic integral of the second kind is defined as follows:

E m m d

| sin 1 2

0

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

Complete Elliptic Integral of the Second Kind

The complete elliptic integral of the second kind is defined as follows:

E m E m m d

2
1 2

0

2

| sin

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

Examples Compute the complete elliptic integrals of the second kind for these
numbers. Because these numbers are not symbolic objects, you get
floating-point results.

s = [ellipticE(-10.5), ellipticE(-pi/4),
ellipticE(0), ellipticE(1)]

s =
3.7096 1.8443 1.5708 1.0000

Compute the complete elliptic integral of the second kind for the same
numbers converted to symbolic objects. For most symbolic (exact)
numbers, ellipticE returns unresolved symbolic calls.

s = [ellipticE(sym(-10.5)), ellipticE(sym(-pi/4)),
ellipticE(sym(0)), ellipticE(sym(1))]

s =

4-170

ellipticE

[ellipticE(-21/2), ellipticE(-pi/4), pi/2, 1]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[3.70961391, 1.844349247, 1.570796327, 1.0]

Differentiate these expressions involving elliptic integrals of the second
kind:

syms m
diff(ellipticE(pi/3, m))
diff(ellipticE(m^2), m, 2)

ans =
ellipticE(pi/3, m)/(2*m) - ellipticF(pi/3, m)/(2*m)

ans =
2*m*((ellipticE(m^2)/(2*m^2) -...
ellipticK(m^2)/(2*m^2))/m - ellipticE(m^2)/m^3 +...
ellipticK(m^2)/m^3 + (ellipticK(m^2)/m +...
ellipticE(m^2)/(m*(m^2 - 1)))/(2*m^2)) +...
ellipticE(m^2)/m^2 - ellipticK(m^2)/m^2

Here, ellipticK and ellipticF represent the complete and incomplete
elliptic integrals of the first kind, respectively.

Plot the incomplete elliptic integrals ellipticE(phi,m) for phi = pi/4
and phi = pi/3. Also plot the complete elliptic integral ellipticE(m):

syms m
p1 = ezplot(ellipticE(pi/4, m));
hold on
p2 = ezplot(ellipticE(pi/3, m));

4-171

ellipticE

p3 = ezplot(ellipticE(m));

set(p1,'Color','red')
set(p2,'Color','green')

title('Elliptic integrals of the second kind')
xlabel('m')
ylabel('ellipticE(m)')
grid
hold off

4-172

ellipticE

Call ellipticE for this symbolic matrix. When the input argument
is a matrix, ellipticE computes the complete elliptic integral of the
second kind for each element.

ellipticE(sym([1/3 1; 1/2 0]))

ans =
[ellipticE(1/3), 1]
[ellipticE(1/2), pi/2]

References [1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

Alternatives You can use ellipke to compute elliptic integrals of the first and second
kinds in one function call.

See Also ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticF
| ellipticK | ellipticPiellipticE | vpa

4-173

ellipticF

Purpose Incomplete elliptic integral of the first kind

Syntax ellipticF(phi,m)

Description ellipticF(phi,m) returns the complete elliptic integral of the first
kind.

Tips • ellipticF returns floating-point results for numeric arguments that
are not symbolic objects.

• For most symbolic (exact) numbers, ellipticF returns unresolved
symbolic calls. You can approximate such results with floating-point
numbers using vpa.

• If one input argument is a scalar and the other one is a vector or
a matrix, ellipticF expands the scalar into a vector or matrix of
the same size as the other argument with all elements equal to that
scalar.

• ellipticF(pi/2, m) = ellipticK(m).

Input
Arguments

m

Number, symbolic number, variable, expression, or function specifying
the parameter. This argument also can be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

phi

Number, symbolic number, variable, expression, or function specifying
the amplitude. This argument also can be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

Definitions Incomplete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

4-174

ellipticF

F m
m

d

|
sin

1

1 2
0

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

Examples Compute the incomplete elliptic integrals of the first kind for these
numbers. Because these numbers are not symbolic objects, you get
floating-point results.

s = [ellipticF(pi/3, -10.5), ellipticF(pi/4, -pi),
ellipticF(1, -1), ellipticF(pi/2, 0)]

s =
0.6184 0.6486 0.8964 1.5708

Compute the incomplete elliptic integrals of the first kind for the same
numbers converted to symbolic objects. For most symbolic (exact)
numbers, ellipticF returns unresolved symbolic calls.

s = [ellipticF(sym(pi/3), -10.5),
ellipticF(sym(pi/4), -pi),...
ellipticF(sym(1), -1), ellipticF(pi/6, sym(0))]

s =
[ellipticF(pi/3, -21/2), ellipticF(pi/4, -pi),
ellipticF(1, -1), pi/6]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[0.6184459461, 0.6485970495, 0.8963937895, 0.5235987756]

4-175

ellipticF

Differentiate this expression involving the incomplete elliptic integral
of the first kind:

syms m
diff(ellipticF(pi/4, m))

ans =
1/(4*(1 - m/2)^(1/2)*(m - 1)) - ellipticF(pi/4, m)/(2*m)
- ellipticE(pi/4, m)/(2*m*(m - 1))

Here, ellipticE represents the incomplete elliptic integral of the
second kind.

Plot the incomplete elliptic integrals ellipticF(phi, m) for phi
= pi/4 and phi = pi/3. Also plot the complete elliptic integral
ellipticK(m):

syms m
p1 = ezplot(ellipticF(pi/4, m))
hold on
p2 = ezplot(ellipticF(pi/3, m))
p3 = ezplot(ellipticK(m))

set(p1,'Color','red')
set(p2,'Color','green')

colormap([0 0 1])
title('Elliptic integrals of the first kind')
xlabel('m')
ylabel('ellipticF(m)')
grid
hold off

4-176

ellipticF

References [1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE
| ellipticK | ellipticPiellipticF | vpa

4-177

ellipticK

Purpose Complete elliptic integral of the first kind

Syntax ellipticK(m)

Description ellipticK(m) returns the complete elliptic integral of the first kind.

Tips • ellipticK returns floating-point results for numeric arguments that
are not symbolic objects.

• For most symbolic (exact) numbers, ellipticK returns unresolved
symbolic calls. You can approximate such results with floating-point
numbers using vpa.

• If m is a vector or a matrix, then ellipticK(m) returns the complete
elliptic integral of the first kind, evaluated for each element of m.

Input
Arguments

m

Number, symbolic number, variable, expression, or function. This
argument also can be a vector or matrix of numbers, symbolic numbers,
variables, expressions, or functions.

Definitions Complete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

K m F m
m

d

2
1

1 2
0

2

|
sin

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

Examples Compute the complete elliptic integrals of the first kind for these
numbers. Because these numbers are not symbolic objects, you get
floating-point results.

4-178

ellipticK

s = [ellipticK(1/2), ellipticK(pi/4), ellipticK(1),
ellipticK(-5.5)]

s =
1.8541 2.2253 Inf 0.9325

Compute the complete elliptic integrals of the first kind for the same
numbers converted to symbolic objects. For most symbolic (exact)
numbers, ellipticK returns unresolved symbolic calls.

s = [ellipticK(sym(1/2)), ellipticK(sym(pi/4)),
ellipticK(sym(1)), ellipticK(sym(-5.5))]

s =
[ellipticK(1/2), ellipticK(pi/4), Inf, ellipticK(-11/2)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[1.854074677, 2.225253684, Inf, 0.9324665884]

Differentiate these expressions involving the complete elliptic integral
of the first kind:

syms m
diff(ellipticK(m))
diff(ellipticK(m^2), m, 2)

ans =
- ellipticK(m)/(2*m) - ellipticE(m)/(2*m*(m - 1))

ans =
(2*ellipticE(m^2))/(m^2 - 1)^2 - (2*(ellipticE(m^2)/(2*m^2) -...
ellipticK(m^2)/(2*m^2)))/(m^2 - 1) + ellipticK(m^2)/m^2 +...
(ellipticK(m^2)/m + ellipticE(m^2)/(m*(m^2 - 1)))/m +...

4-179

ellipticK

ellipticE(m^2)/(m^2*(m^2 - 1))

Here, ellipticE represents the complete elliptic integral of the second
kind.

Plot the complete elliptic integral of the first kind:

syms m
ezplot(ellipticK(m))

colormap([0 0 1])
title('Complete elliptic integral of the first kind')
xlabel('m')
ylabel('ellipticK(m)')
grid
hold off

4-180

ellipticK

Call ellipticK for this symbolic matrix. When the input argument
is a matrix, ellipticK computes the complete elliptic integral of the
first kind for each element.

ellipticK(sym([-2*pi -4; 0 1]))

ans =
[ellipticK(-2*pi), ellipticK(-4)]
[pi/2, Inf]

4-181

ellipticK

References [1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

Alternatives You can use ellipke to compute elliptic integrals of the first and second
kinds in one function call.

See Also ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE
| ellipticF | ellipticPiellipticK | vpa

4-182

ellipticPi

Purpose Elliptic integral of the third kind

Syntax ellipticPi(n,m)
ellipticPi(n,phi,m)

Description ellipticPi(n,m) returns the complete elliptic integral of the third
kind.

ellipticPi(n,phi,m) returns the incomplete elliptic integral of the
third kind.

Tips • ellipticPi returns floating-point results for numeric arguments
that are not symbolic objects.

• For most symbolic (exact) numbers, ellipticPi returns unresolved
symbolic calls. You can approximate such results with floating-point
numbers using vpa.

• If one input argument is a vector or a matrix, and the other two
arguments are scalars, then ellipticPi expands the scalars into
vectors or matrices of the same size as the non-scalar argument, with
all elements equal to the corresponding scalar.

• ellipticPi(n, pi/2, m) = ellipticPi(n, m).

Input
Arguments

n

Number, symbolic number, variable, expression, or function specifying
the characteristic. This argument also can be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

m

Number, symbolic number, variable, expression, or function specifying
the parameter. This argument also can be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

phi

4-183

ellipticPi

Number, symbolic number, variable, expression, or function specifying
the amplitude. This argument also can be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

Definitions Incomplete Elliptic Integral of the Third Kind

The incomplete elliptic integral of the third kind is defined as follows:

 n m
n m

d; |
sin sin

1

1 12 2
0

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

Complete Elliptic Integral of the Third Kind

The complete elliptic integral of the third kind is defined as follows:

 n m n m
n m

d, ; |
sin sin

2
1

1 12 2
0

2

Note that some definitions use the elliptical modulus k or the modular
angle α instead of the parameter m. They are related as m = k2 = sin2α.

Examples Compute the incomplete elliptic integrals of the third kind for these
numbers. Because these numbers are not symbolic objects, you get
floating-point results.

s = [ellipticPi(-2.3, pi/4, 0), ellipticPi(1/3,
pi/3, 1/2),...
ellipticPi(-1, 0, 1), ellipticPi(2, pi/6, 2)]

s =
0.5877 1.2850 0 0.7507

4-184

ellipticPi

Compute the incomplete elliptic integrals of the third kind for the same
numbers converted to symbolic objects. For most symbolic (exact)
numbers, ellipticPi returns unresolved symbolic calls.

s = [ellipticPi(-2.3, sym(pi/4), 0), ellipticPi(sym(1/3),
pi/3, 1/2),...
ellipticPi(-1, sym(0), 1), ellipticPi(2, pi/6, sym(2))]

s =
[ellipticPi(-23/10, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),...
0, (2^(1/2)*3^(1/2))/2 - ellipticE(pi/6, 2)]

Here, ellipticE represents the incomplete elliptic integral of the
second kind.

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[0.5876852228, 1.285032276, 0, 0.7507322117]

Differentiate these expressions involving the complete elliptic integral
of the third kind:

syms n m
diff(ellipticPi(n, m), n)
diff(ellipticPi(n, m), m)

ans =
ellipticK(m)/(2*n*(n - 1)) + ellipticE(m)/(2*(m - n)*(n - 1)) -...
(ellipticPi(n, m)*(- n^2 + m))/(2*n*(m - n)*(n - 1))

ans =
- ellipticPi(n, m)/(2*(m - n)) - ellipticE(m)/(2*(m
- n)*(m - 1))

4-185

ellipticPi

Here, ellipticK and ellipticE represent the complete elliptic
integrals of the first and second kinds.

Call ellipticPi for the scalar and the matrix. When one input
argument is a matrix, ellipticPi expands the scalar argument to a
matrix of the same size with all its elements equal to the scalar.

ellipticPi(sym(0), sym([1/3 1; 1/2 0]))

ans =
[ellipticK(1/3), Inf]
[ellipticK(1/2), pi/2]

Here, ellipticK represents the complete elliptic integral of the first
kind.

References [1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE
| ellipticF | ellipticKellipticPi | vpa

4-186

eq

Purpose Define equation

Note In previous releases, eq evaluated equations and returned
logical 1 or 0. Now it returns unevaluated equations letting you create
equations that you can pass to solve, assume, and other functions.
To obtain the same results as in previous releases, wrap equations in
logical or isAlways. For example, use logical(A == B).

Syntax A == B
eq(A,B)

Description A == B creates a symbolic equation.

eq(A,B) is equivalent to A == B.

Tips • If A and B are both numbers, then A == B compares A and B and
returns logical 1 (true) or logical 0 (false). Otherwise, A == B
returns a symbolic equation. You can use that equation as an
argument for such functions as solve, assume, ezplot, and subs.

• If both A and B are arrays, then these arrays must have
the same dimensions. A == B returns an array of equations
A(i,j,...)==B(i,j,...)

• If one input is scalar and the other an array, then == expands the
scalar into an array of the same dimensions as the input array. In
other words, if A is a variable (for example, x), and B is an m-by-n
matrix, then A is expanded into m-by-n matrix of elements, each
set to x.

Input
Arguments

A

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

4-187

eq

B

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

Examples Solve this trigonometric equation. To define the equation, use the
relational operator ==.

syms x
solve(sin(x) == cos(x), x)

ans =
pi/4

Plot this trigonometric equation. To define the equation, use the
relational operator ==.

syms x y
ezplot(sin(x^2) == sin(y^2))

4-188

eq

Check the equality of two symbolic matrices. Because the elements of
both matrices are numbers, == returns logical 1s and 0s:

A = sym(hilb(3));
B = sym([1, 1/2, 5; 1/2, 2, 1/4; 1/3, 1/8, 1/5]);
A == B

ans =
1 1 0
1 0 1

4-189

eq

1 0 1

If you use == to compare a matrix and a scalar, then == expands the
scalar into a matrix of the same dimensions as the input matrix:

A = sym(hilb(3));
B = sym(1/2);
A == B

ans =
0 1 0
1 0 0
0 0 0

If the input arguments are symbolic variables or expression, == does not
return logical 1s and 0s. Instead, it creates equations:

syms x
x + 1 == x + 1
sin(x)/cos(x) == tan(x)

ans =
x + 1 == x + 1

ans =
sin(x)/cos(x) == tan(x)

To test the equality of two symbolic expressions, use logical or
isAlways. Use logical when expressions on both sides of the equation
do not require simplification or transformation:

logical(x + 1 == x + 1)

ans =
1

4-190

eq

Use isAlways when expressions need to be simplified or transformed or
when you use assumptions on variables:

isAlways(sin(x)/cos(x) == tan(x))

ans =
1

See Also ge | gt | isAlways | le | logical | lt | ne | solve

Concepts • “Solve Equations” on page 1-28
• “Set Assumptions” on page 1-35

4-191

equationsToMatrix

Purpose Convert set of linear equations to matrix form

Syntax [A,b] = equationsToMatrix(eqns,vars)
[A,b] = equationsToMatrix(eqns)
A = equationsToMatrix(eqns,vars)
A = equationsToMatrix(eqns)

Description [A,b] = equationsToMatrix(eqns,vars) converts eqns to the matrix
form. Here eqns must be linear equations in vars.

[A,b] = equationsToMatrix(eqns) converts eqns to the matrix form.
Here eqns must be a linear system of equations in all variables that
symvar finds in these equations.

A = equationsToMatrix(eqns,vars) converts eqns to the matrix
form and returns only the coefficient matrix. Here eqns must be linear
equations in vars.

A = equationsToMatrix(eqns) converts eqns to the matrix form and
returns only the coefficient matrix. Here eqns must be a linear system
of equations in all variables that symvar finds in these equations.

Tips • If you specify equations and variables all together, without dividing
them into two vectors, specify all equations first, and then specify
variables. If input arguments are not vectors, equationsToMatrix
searches for variables starting from the last input argument. When
it finds the first argument that is not a single variable, it assumes
that all remaining arguments are equations, and therefore stops
looking for variables.

Input
Arguments

eqns

Vector of equations or equations separated by commas. Each equation
is either a symbolic equation defined by the relation operator == or a
symbolic expression. If you specify a symbolic expression (without the
right side), equationsToMatrix assumes that the right side is 0.

Equations must be linear in terms of vars.

4-192

equationsToMatrix

vars

Independent variables of eqns. You can specify vars as a vector.
Alternatively, you can list variables separating them by commas.

Default: Variables determined by symvar

Output
Arguments

A

Coefficient matrix of the system of linear equations.

b

Vector containing the right sides of equations.

Definitions Matrix Representation of a System of Linear Equations

A system of linear equations

a x a x a x b

a x a x a x b

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

 a x bmn n m

can be represented as the matrix equation A x b

, where A is the
coefficient matrix:

A
a a

a a

n

m mn

11 1

1

and b

is the vector containing the right sides of equations:

b
b

bm

1

4-193

equationsToMatrix

Examples Convert this system of linear equations to the matrix form. To get the
coefficient matrix and the vector of the right sides of equations, assign
the result to a vector of two output arguments:

syms x y z;
[A, b] = equationsToMatrix([x + y - 2*z == 0, x + y +
z == 1, 2*y - z + 5 == 0], [x, y, z])

A =
[1, 1, -2]
[1, 1, 1]
[0, 2, -1]

b =
0
1

-5

Convert this system of linear equations to the matrix form. Assigning
the result of the equationsToMatrix call to a single output argument,
you get the coefficient matrix. In this case, equationsToMatrix does
not return the vector containing the right sides of equations:

syms x y z;
A = equationsToMatrix([x + y - 2*z == 0, x + y + z ==
1, 2*y - z + 5 == 0], [x, y, z])

A =
[1, 1, -2]
[1, 1, 1]
[0, 2, -1]

Convert this linear system of equations to the matrix form without
specifying independent variables. The toolbox uses symvar to identify
variables:

4-194

equationsToMatrix

syms s t;
[A, b] = equationsToMatrix([s - 2*t + 1 ==
0, 3*s - t == 10])

A =
[1, -2]
[3, -1]

b =
-1
10

If the system is only linear in some variables, specify those variables
explicitly:

syms a s t;
[A, b] = equationsToMatrix([s - 2*t + a == 0, 3*s
- a*t == 10], [t, s])

A =
[-2, 1]
[-a, 3]

b =
-a
10

You also can specify equations and variables all together, without using
vectors and simply separating each equation or variable by a comma.
Specify all equations first, and then specify variables:

syms x y;
[A, b] = equationsToMatrix(x + y == 1, x - y + 1, x, y)

A =
[1, 1]
[1, -1]

4-195

equationsToMatrix

b =
1

-1

Now change the order of the input arguments as follows.
equationsToMatrix finds the variable y, then it finds the expression
x y + 1. After that, it assumes that all remaining arguments are
equations, and stops looking for variables. Thus, equationsToMatrix
finds the variable y and the system of equations x + y = 1, x = 0,
x - y + 1 = 0:

[A, b] = equationsToMatrix(x + y == 1, x, x - y + 1, y)

A =
1
0

-1

b =
1 - x

-x
- x - 1

If you try to convert a nonlinear system of equations,
equationsToMatrix throws an error:

syms x y;
[A, b] = equationsToMatrix(x^2 + y^2 == 1, x - y + 1, x, y)

Error using symengine (line 56)
Cannot convert to matrix form because
the system does not seem to be linear.

See Also linsolve | odeToVectorField | solve | symvar

4-196

equationsToMatrix

Related
Examples

• “Solve a System of Differential Equations” on page 2-92

4-197

erf

Purpose Error function

Syntax erf(x)
erf(A)

Description erf(x) computes the error function of x.

erf(A) computes the error function of each element of A.

Tips • Calling erf for a number that is not a symbolic object invokes the
MATLAB erf function. This function accepts real arguments only. If
you want to compute the error function for a complex number, use
sym to convert that number to a symbolic object, and then call erf
for that symbolic object.

Input
Arguments

x

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Error Function

The following integral defines the error function:

erf x e dtt
x

()
2 2

0

Examples Compute the error function for these numbers. Because these numbers
are not symbolic objects, you get the floating-point results:

[erf(1/2), erf(1.41), erf(sqrt(2))]

ans =
0.5205 0.9539 0.9545

4-198

erf

Compute the error function for the numbers converted to symbolic
objects. For most symbolic (exact) numbers, erf returns unresolved
symbolic calls:

[erf(sym(1/2)), erf(sym(1.41)), erf(sqrt(sym(2)))]

ans =
[erf(1/2), erf(141/100), erf(2^(1/2))]

Compute the error function for x = 0, x = ∞, and x = –∞. Use sym to
convert 0 and infinities to symbolic objects. The error function has
special values for these parameters:

[erf(sym(0)), erf(sym(inf)), erf(sym(-inf))]

ans =
[0, 1, -1]

Compute the error function for complex infinities. Use sym to convert
complex infinities to symbolic objects:

[erf(sym(i*inf)), erf(sym(-i*inf))]

ans =
[Inf*i, -Inf*i]

Compute the error function for x and sin(x) + x*exp(x). For most
symbolic variables and expressions, erf returns unresolved symbolic
calls:

syms x
f = sin(x) + x*exp(x);
erf(x)
erf(f)

4-199

erf

ans =
erf(x)

ans =
erf(sin(x) + x*exp(x))

Now compute the derivatives of these expressions:

diff(erf(x), x, 2)
diff(erf(f), x)

ans =

-(4*x*exp(-x^2))/pi^(1/2)

ans =

(2*exp(-(sin(x) + x*exp(x))^2)*(cos(x) + exp(x) + x*exp(x)))/pi^(1/2)

Compute the error function for elements of matrix M and vector V:

M =sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erf(M)
erf(V)

ans =
[0, 1]
[erf(1/3), -1]

ans =
erf(1)
-Inf*i

Algorithms The toolbox can simplify expressions that contain error functions and
their inverses. For real values x, the toolbox applies these simplification
rules:

4-200

erf

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 -
erf(x)) = erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 +
erf(x)) = erfcinv(2 - erfc(x)) = -x

For any value x, the system applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)

• erfinv(-x) = -erfinv(x)

• erfcinv(2 - x) = -erfcinv(x)

• erf(erfinv(x)) = erfc(erfcinv(x)) = x

• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also erfc | erfcinv | erfi | erfinv

How To • “Special Functions of Applied Mathematics” on page 2-142

4-201

erfc

Purpose Complementary error function

Syntax erfc(x)
erfc(A)

Description erfc(x) computes the complementary error function of x.

erfc(A) computes the complementary error function of each element
of A.

Tips • Calling erfc for a number that is not a symbolic object invokes the
MATLAB erfc function. This function accepts real arguments only.
If you want to compute the complementary error function for a
complex number, use sym to convert that number to a symbolic object,
and then call erfc for that symbolic object.

Input
Arguments

x

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Complementary Error Function

The following integral defines the complementary error function:

erfc x e dt erf xt

x

()

2

1
2

Here erf(x) is the error function.

Examples Compute the complementary error function for these numbers. Because
these numbers are not symbolic objects, you get the floating-point
results:

[erfc(1/2), erfc(1.41), erfc(sqrt(2))]

4-202

erfc

ans =
0.4795 0.0461 0.0455

Compute the complementary error function for the numbers converted
to symbolic objects. For most symbolic (exact) numbers, erfc returns
unresolved symbolic calls:

[erfc(sym(1/2)), erfc(sym(1.41))]

ans =
[erfc(1/2), erfc(141/100)]

Compute the complementary error function for x = 0, x = ∞, and x =
–∞. The complementary error function has special values for these
parameters:

[erfc(0), erfc(inf), erfc(-inf)]

ans =
1 0 2

Compute the complementary error function for complex infinities. Use
sym to convert complex infinities to symbolic objects:

[erfc(sym(i*inf)), erfc(sym(-i*inf))]

[1 - Inf*i, Inf*i + 1]

Compute the complementary error function for x and sin(x) +
x*exp(x). For most symbolic variables and expressions, erfc returns
unresolved symbolic calls:

syms x
f = sin(x) + x*exp(x);
erfc(x)

4-203

erfc

erfc(f)

ans =
erfc(x)

ans =
erfc(sin(x) + x*exp(x))

Now compute the derivatives of these expressions:

diff(erfc(x), x, 2)
diff(erfc(f), x)

ans =

(4*x*exp(-x^2))/pi^(1/2)

ans =

-(2*exp(-(sin(x) + x*exp(x))^2)*(cos(x) + exp(x) + x*exp(x)))/pi^(1/2)

Compute the complementary error function for elements of matrix
M and vector V:

M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erfc(M)
erfc(V)

ans =
[1, 0]
[erfc(1/3), 2]

ans =
erfc(1)

Inf*i + 1

4-204

erfc

Algorithms The toolbox can simplify expressions that contain error functions and
their inverses. For real values x, the toolbox applies these simplification
rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 -
erf(x)) = erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 +
erf(x)) = erfcinv(2 - erfc(x)) = -x

For any value x, the system applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)

• erfinv(-x) = -erfinv(x)

• erfcinv(2 - x) = -erfcinv(x)

• erf(erfinv(x)) = erfc(erfcinv(x)) = x

• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also erf | erfcinv | erfi | erfinv

How To • “Special Functions of Applied Mathematics” on page 2-142

4-205

erfcinv

Purpose Inverse complementary error function

Syntax erfcinv(x)
erfcinv(A)

Description erfcinv(x) computes the inverse complementary error function of x.

erfcinv(A) computes the inverse complementary error function of each
element of A.

Tips • Calling erfcinv for a number that is not a symbolic object invokes
the MATLAB erfcinv function. This function accepts real arguments
only. If you want to compute the inverse complementary error
function for a complex number, use sym to convert that number to a
symbolic object, and then call erfcinv for that symbolic object.

• If x < 0 or x > 2, the MATLAB erfcinv function returns NaN. The
symbolic erfcinv function returns unresolved symbolic calls for
such numbers. To call the symbolic erfcinv function, convert its
argument to a symbolic object using sym.

Input
Arguments

x

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Inverse Complementary Error Function

The inverse complementary error function is defined as erfc-1(x), such
that erfc(erfc-1(x)) = x. Here

erfc x e dt erf xt

x

()

2

1
2

is the complementary error function.

4-206

erfcinv

Examples Compute the inverse complementary error function for these numbers.
Because these numbers are not symbolic objects, you get floating-point
results:

[erfcinv(1/2), erfcinv(1.33), erfcinv(3/2),
erfcinv(-1), erfcinv(15)]

ans =
0.4769 -0.3013 -0.4769 NaN NaN

Compute the inverse complementary error function for the numbers
converted to symbolic objects. For most symbolic (exact) numbers,
erfcinv returns unresolved symbolic calls:

[erfcinv(sym(1/2)), erfcinv(sym(1.33)), erfcinv(sym(-2))]

ans =
[-erfcinv(3/2), erfcinv(133/100), -erfcinv(4)]

Compute the inverse complementary error function for x = 0, x = 1, and
x = 2. The inverse complementary error function has special values
for these parameters:

[erfcinv(0), erfcinv(1), erfcinv(2)]

ans =
Inf 0 -Inf

Compute the inverse complementary error function for complex
numbers. Use sym to convert complex numbers to symbolic objects:

[erfcinv(sym(2 + 3*i)), erfcinv(sym(1 - i))]

ans =
[erfcinv(2 + 3*i), -erfcinv(1 + i)]

4-207

erfcinv

Compute the inverse complementary error function for x and sin(x)
+ x*exp(x). For most symbolic variables and expressions, erfcinv
returns unresolved symbolic calls:

syms x
f = sin(x) + x*exp(x);
erfcinv(x)
erfcinv(f)

ans =
erfcinv(x)

ans =
erfcinv(sin(x) + x*exp(x))

Now compute the derivatives of these expressions:

diff(erfcinv(x), x, 2)
diff(erfcinv(f), x)

ans =
(pi*exp(2*erfcinv(x)^2)*erfcinv(x))/2

ans =
-(pi^(1/2)*exp(erfcinv(sin(x) +...
x*exp(x))^2)*(cos(x) + exp(x) + x*exp(x)))/2

Compute the inverse complementary error function for elements of
matrix M and vector V:

M = sym([0 1 + i; 1/3 1]);
V = sym([2; inf]);
erfcinv(M)
erfcinv(V)

4-208

erfcinv

ans =
[Inf, erfcinv(1 + i)]
[-erfcinv(5/3), 0]

ans =
-Inf

erfcinv(Inf)

Algorithms The toolbox can simplify expressions that contain error functions and
their inverses. For real values x, the toolbox applies these simplification
rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 -
erf(x)) = erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 +
erf(x)) = erfcinv(2 - erfc(x)) = -x

For any value x, the toolbox applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)

• erfinv(-x) = -erfinv(x)

• erfcinv(2 - x) = -erfcinv(x)

• erf(erfinv(x)) = erfc(erfcinv(x)) = x

• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also erf | erfc | erfi | erfinv

How To • “Special Functions of Applied Mathematics” on page 2-142

4-209

erfi

Purpose Imaginary error function

Syntax erfi(x)

Description erfi(x) returns the imaginary error function of x. If x is a vector or a
matrix, erfi(x) returns the imaginary error function of each element
of x.

Tips • erfi returns special values for these parameters:

- erfi(0) = 0

- erfi(inf) = inf

- erfi(-inf) = -inf

- erfi(i*inf) = i

- erfi(-i*inf) = -i

Input
Arguments

x - Input
floating-point number | symbolic number | symbolic variable | symbolic
expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a floating-point or symbolic number, variable,
expression, function, vector, or matrix.

Definitions Imaginary Error Function

The imaginary error function is defined as:

erfi x i erf ix e dtt
x

2 2

0

Examples Imaginary Error Function for Floating-Point and Symbolic
Numbers

Compute the imaginary error function for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

4-210

erfi

s = [erfi(1/2), erfi(1.41), erfi(sqrt(2))]

s =
0.6150 3.7382 3.7731

Compute the imaginary error function for the same numbers converted
to symbolic objects. For most symbolic (exact) numbers, erfi returns
unresolved symbolic calls.

s = [erfi(sym(1/2)), erfi(sym(1.41)), erfi(sqrt(sym(2)))]

s =
[erfi(1/2), erfi(141/100), erfi(2^(1/2))]

Use vpa to approximate this result with the 10-digit accuracy:

vpa(s, 10)

ans =
[0.6149520947, 3.738199581, 3.773122512]

Special Values of Imaginary Error Function

Compute the imaginary error function for x = 0, x = ∞, and x = –∞. Use
sym to convert 0 and infinities to symbolic objects. The imaginary error
function has special values for these parameters:

[erfi(sym(0)), erfi(sym(inf)), erfi(sym(-inf))]

ans =
[0, Inf, -Inf]

Compute the imaginary error function for complex infinities. Use sym to
convert complex infinities to symbolic objects:

[erfi(sym(i*inf)), erfi(sym(-i*inf))]

ans =
[i, -i]

4-211

erfi

Imaginary Error Function for Variables and Expressions

Compute the imaginary error function for x and sin(x) + x*exp(x).
For most symbolic variables and expressions, erfi returns unresolved
symbolic calls.

syms x
f = sin(x) + x*exp(x);
erfi(x)
erfi(f)

ans =
erfi(x)

ans =
erfi(sin(x) + x*exp(x))

Now, compute the derivatives of these expressions:

diff(erfi(x), x, 2)
diff(erfi(f), x)

ans =

(4*x*exp(x^2))/pi^(1/2)

ans =

(2*exp((sin(x) + x*exp(x))^2)*(cos(x) + exp(x) + x*exp(x)))/pi^(1/2)

Imaginary Error Function for Matrices and Vectors

Compute the imaginary error function for elements of matrix M and
vector V:

M =sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erfi(M)
erfi(V)

ans =

4-212

erfi

[0, Inf]
[erfi(1/3), -Inf]

ans =
erfi(1)

-i

See Also erf | erfc | erfcinv | erfinv | vpa

4-213

erfinv

Purpose Inverse error function

Syntax erfinv(x)
erfinv(A)

Description erfinv(x) computes the inverse error function of x.

erfinv(A) computes the inverse error function of each element of A.

Tips • Calling erfinv for a number that is not a symbolic object invokes the
MATLAB erfinv function. This function accepts real arguments
only. If you want to compute the inverse error function for a complex
number, use sym to convert that number to a symbolic object, and
then call erfinv for that symbolic object.

• If x < –1 or x > 1, the MATLAB erfinv function returns NaN. The
symbolic erfinv function returns unresolved symbolic calls for such
numbers. To call the symbolic erfinv function, convert its argument
to a symbolic object using sym.

Input
Arguments

x

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Inverse Error Function

The inverse error function is defined as erf -1(x), such that
erf(erf -1(x)) = erf -1(erf(x)) = x. Here

erf x e dtt
x

()
2 2

0

is the error function.

4-214

erfinv

Examples Compute the inverse error function for these numbers. Because these
numbers are not symbolic objects, you get floating-point results:

[erfinv(1/2), erfinv(0.33), erfinv(-1/3),
erfinv(-2), erfinv(15)]

ans =
0.4769 0.3013 -0.3046 NaN NaN

Compute the inverse error function for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, erfinv returns
unresolved symbolic calls:

[erfinv(sym(1/2)), erfinv(sym(0.33)), erfinv(sym(-2))]

ans =
[erfinv(1/2), erfinv(33/100), -erfinv(2)]

Compute the inverse error function for x = –1, x = 0, and x = 1. The
inverse error function has special values for these parameters:

[erfinv(-1), erfinv(0), erfinv(1)]

ans =
-Inf 0 Inf

Compute the inverse error function for complex numbers. Use sym to
convert complex numbers to symbolic objects:

[erfinv(sym(2 + 3*i)), erfinv(sym(1 - i))]

ans =
[erfinv(2 + 3*i), erfinv(1 - i)]

4-215

erfinv

Compute the inverse error function for x and sin(x) + x*exp(x). For
most symbolic variables and expressions, erfinv returns unresolved
symbolic calls:

syms x
f = sin(x) + x*exp(x);
erfinv(x)
erfinv(f)

ans =
erfinv(x)

ans =
erfinv(sin(x) + x*exp(x))

Now compute the derivatives of these expressions:

diff(erfinv(x), x, 2)
diff(erfinv(f), x)

ans =
(pi*exp(2*erfinv(x)^2)*erfinv(x))/2

ans =
(pi^(1/2)*exp(erfinv(sin(x) +...
x*exp(x))^2)*(cos(x) + exp(x) + x*exp(x)))/2

Compute the inverse error function for elements of matrix M and vector
V:

M = sym([0 1 + i; 1/3 1]);
V = sym([-1; inf]);
erfinv(M)
erfinv(V)

ans =
[0, erfinv(1 + i)]

4-216

erfinv

[erfinv(1/3), Inf]

ans =
-Inf

erfinv(Inf)

Algorithms The toolbox can simplify expressions that contain error functions and
their inverses. For real values x, the toolbox applies these simplification
rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 -
erf(x)) = erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 +
erf(x)) = erfcinv(2 - erfc(x)) = -x

For any value x, the toolbox applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)

• erfinv(-x) = -erfinv(x)

• erfcinv(2 - x) = -erfcinv(x)

• erf(erfinv(x)) = erfc(erfcinv(x)) = x

• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also erf | erfc | erfcinv | erfi

How To • “Special Functions of Applied Mathematics” on page 2-142

4-217

evalin

Purpose Evaluate MuPAD expressions without specifying their arguments

Syntax result = evalin(symengine,MuPAD_expression)
[result,status] = evalin(symengine,MuPAD_expression)

Description result = evalin(symengine,MuPAD_expression) evaluates the
MuPAD expression MuPAD_expression, and returns result as a
symbolic object. If MuPAD_expression throws an error in MuPAD,
then this syntax throws an error in MATLAB.

[result,status] = evalin(symengine,MuPAD_expression) lets you
catch errors thrown by MuPAD. This syntax returns the error status
in status and the error message in result if status is nonzero. If
status is 0, result is a symbolic object; otherwise, it is a string.

Tips • Results returned by evalin can differ from the results that you get
using a MuPAD notebook directly. The reason is that evalin sets a
lower level of evaluation to achieve better performance.

Input
Arguments

MuPAD_expression

String containing a MuPAD expression.

Output
Arguments

result

Symbolic object or string containing a MuPAD error message.

status

Integer indicating the error status. If MuPAD_expression executes
without errors, the error status is 0.

Examples Compute the discriminant of the following polynomial:

evalin(symengine,'polylib::discrim(a*x^2+b*x+c,x)')

ans =
b^2 - 4*a*c

4-218

evalin

Try using polylib::discrim to compute the discriminant of the
following nonpolynomial expression:

[result, status] =
evalin(symengine,'polylib::discrim(a*x^2+b*x+c*ln(x),x)')

result =
Error: An arithmetical expression is expected. [normal]

status =
2

Alternatives feval lets you evaluate MuPAD expressions with arguments. When
using feval, you must explicitly specify the arguments of the MuPAD
expression.

See Also feval | read | symengine

Related
Examples

• “Call Built-In MuPAD Functions from MATLAB Command Window”
on page 3-32

Concepts • “Evaluations in Symbolic Computations”
• “Level of Evaluation”

4-219

expand

Purpose Symbolic expansion of polynomials and elementary functions

Syntax expand(S)
expand(S,Name,Value)

Description expand(S) expands the symbolic expression S. expand is often used
with polynomials. It also expands trigonometric, exponential, and
logarithmic functions.

expand(S,Name,Value) expands S using additional options specified
by one or more Name,Value pair arguments.

Input
Arguments

S

Symbolic expression or symbolic matrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ArithmeticOnly’

If the value is true, expand the arithmetic part of an expression without
expanding trigonometric, hyperbolic, logarithmic, and special functions.
This option does not prevent expansion of powers and roots.

Default: false

’IgnoreAnalyticConstraints’

If the value is true, apply purely algebraic simplifications to an
expression. With IgnoreAnalyticConstraints, expand can return
simpler results for the expressions for which it would return more
complicated results otherwise. Using IgnoreAnalyticConstraints
also can lead to results that are not equivalent to the initial expression.

4-220

expand

Default: false

Examples Expand the expression:

syms x
expand((x-2)*(x-4))

The result is:

ans =
x^2 - 6*x + 8

Expand the trigonometric expression:

syms x y
expand(cos(x+y))

The result is:

ans =
cos(x)*cos(y) - sin(x)*sin(y)

Expand the exponent:

syms a b
expand(exp((a + b)^2))

The result is:

ans =
exp(2*a*b)*exp(a^2)*exp(b^2)

Expand the expressions that form a vector:

syms t

4-221

expand

expand([sin(2*t), cos(2*t)])

The result is:

ans =
[2*cos(t)*sin(t), cos(t)^2 - sin(t)^2]

Expand this expression:

syms x
expand((sin(3*x) - 1)^2)

By default, expand works on all subexpressions including trigonometric
subexpressions:

ans =

2*sin(x) + sin(x)^2 - 8*cos(x)^2*sin(x) - 8*cos(x)^2*sin(x)^2

+ 16*cos(x)^4*sin(x)^2 + 1

To prevent expansion of trigonometric, hyperbolic, and logarithmic
subexpressions and subexpressions involving special functions, use
ArithmeticOnly:

expand((sin(3*x) - 1)^2, 'ArithmeticOnly', true)

The result is the expression with expanded arithmetical parts:

ans =
sin(3*x)^2 - 2*sin(3*x) + 1

Expand this logarithm:

syms a b c
expand(log((a*b/c)^2))

By default, the expand function does not expand logarithms because
expanding logarithms is not valid for generic complex values:

4-222

expand

ans =
log((a^2*b^2)/c^2)

To apply the simplification rules that let the expand function expand
logarithms, use IgnoreAnalyticConstraints:

expand(log((a*b/c)^2), 'IgnoreAnalyticConstraints', true)

The result is:

ans =
2*log(a) + 2*log(b) - 2*log(c)

Algorithms When you use IgnoreAnalyticConstraints, expand applies these
rules:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the
following equality is valid for all values of a, b, and c:

(a·b)c = ac·bc.

• log(ab) = b·log(a) for all values of a and b. In particular, the following
equality is valid for all values of a, b, and c:

(ab)c = ab·c.

• If f and g are standard mathematical functions and f(g(x)) = x for
all small positive numbers, f(g(x)) = x is assumed to be valid for all
complex x. In particular:

- log(ex) = x

- asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x

- asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x

- Wk(x·e
x) = x for all values of k

See Also collect | factor | horner | numden | rewrite | simplify |
simplifyFraction

How To • “Simplifications” on page 2-33

4-223

expint

Purpose Exponential integral function

Syntax expint(x)
expint(n,x)

Description expint(x) returns the one-argument exponential integral function
defined as follows:

expint x
e
t

dt
t

x

expint(n,x) returns the two-argument exponential integral function
defined as follows:

expint ,n x
e

t
dt

xt

n

1

Tips • expint(x) is uniquely defined for positive numbers. It is
approximated for the rest of the complex plane.

• Calling expint for numbers that are not symbolic objects invokes
the MATLAB expint function. This function accepts one argument
only. To compute the two-argument exponential integral, use sym
to convert the numbers to symbolic objects, and then call expint
for those symbolic objects. You can approximate the results with
floating-point numbers using vpa.

• The following values of the exponential integral differ from those
returned by the MATLAB expint function: expint(sym(Inf)) = 0,
expint(-sym(Inf)) = -Inf, expint(sym(NaN)) = NaN.

• For positive x, expint(x) = -ei(-x). For negative x, expint(x)
= -pi*i - ei(-x).

• If one input argument is a scalar and the other one is a vector or a
matrix, expint(n,x) expands the scalar into a vector or matrix of

4-224

expint

the same size as the other argument with all elements equal to that
scalar.

Input
Arguments

x - Input
symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function,
vector, or matrix.

n - Input
symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function,
vector, or matrix. When you compute the two-argument exponential
integral function, at least one argument must be a scalar.

Examples One-Argument Exponential Integral for Floating-Point and
Symbolic Numbers

Compute the exponential integrals for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

s = [expint(1/3), expint(1), expint(-2)]

s =
0.8289 + 0.0000i 0.2194 + 0.0000i -4.9542 - 3.1416i

Compute the exponential integrals for the same numbers converted to
symbolic objects. For positive values x, expint(x) returns -ei(-x). For
negative values x, it returns -pi*i - ei(-x).

s = [expint(sym(1)/3), expint(sym(1)), expint(sym(-2))]

s =
[-ei(-1/3), -ei(-1), - pi*i - ei(2)]

Use vpa to approximate this result with the 10-digit accuracy:

4-225

expint

vpa(s, 10)

ans =
[0.8288877453, 0.2193839344, - 4.954234356
- 3.141592654*i]

Two-Argument Exponential Integral for Floating-Point and
Symbolic Numbers

When computing two-argument exponential integrals, convert numbers
to symbolic objects:

s = [expint(2, sym(1)/3), expint(sym(1), Inf),
expint(-1, sym(-2))]

s =
[expint(2, 1/3), 0, -exp(2)/4]

Use vpa to approximate this result with the 25- digit accuracy:

vpa(s, 25)

ans =
[0.4402353954575937050522018, 0,
-1.847264024732662556807607]

Two-Argument Exponential Integral with a Nonpositive First
Argument

Compute these two-argument exponential integrals. If n is a nonpositive
integer, then expint(n, x) returns an explicit expression in the form
exp(-x)*p(1/x), where p is a polynomial of degree 1 - n.

syms x
expint(0, x)
expint(-1, x)
expint(-2, x)

ans =
exp(-x)/x

4-226

expint

ans =
exp(-x)*(1/x + 1/x^2)

ans =
exp(-x)*(1/x + 2/x^2 + 2/x^3)

Derivatives of the Exponential Integral

Compute the first, second, and third derivatives of the one-argument
exponential integral:

syms x
diff(expint(x), x)
diff(expint(x), x, 2)
diff(expint(x), x, 3)

ans =
-exp(-x)/x

ans =
exp(-x)/x + exp(-x)/x^2

ans =
- exp(-x)/x - (2*exp(-x))/x^2 - (2*exp(-x))/x^3

Compute the first derivatives of the two-argument exponential integral:

syms n x
diff(expint(n, x), x)
diff(expint(n, x), n)

ans =
-expint(n - 1, x)

ans =
- hypergeom([1 - n, 1 - n], [2 - n, 2 - n], -x)/(n - 1)^2 -...
(pi*x^(n - 1)*(psi(n) - log(x) +
pi*cot(pi*n)))/(sin(pi*n)*gamma(n))

4-227

expint

See Also ei | expintEi | vpa

4-228

expm

Purpose Compute symbolic matrix exponential

Syntax expm(A)

Description expm(A) computes the matrix exponential of the symbolic matrix A.

Examples Compute the matrix exponential for the following matrix and simplify
the result:

syms t
A = [0 1; -1 0];
simplify(expm(t*A))

The result is:

ans =
[cos(t), sin(t)]
[-sin(t), cos(t)]

See Also eig

4-229

ezcontour

Purpose Contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontour(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a symbolic
expression that represents a mathematical function of two variables,
such as x and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezcontour(u^2 - v^3,[0,1],[3,6]) plots the
contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

ezcontour(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezcontour automatically adds a title and axis labels.

Examples The following mathematical expression defines a function of two
variables, x and y.

f x y x e
x

x y e ex y x y x(,) () () (= − − − −⎛
⎝⎜

⎞
⎠⎟

−− − + − − − +3 1 10
5

1
3

2 2 1 2 3 5 2 2 1)) .
2 2−y

ezcontour requires a sym argument that expresses this function using
MATLAB syntax to represent exponents, natural logs, etc. This function
is represented by the symbolic expression

4-230

ezcontour

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...

- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
- 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontour along with a domain ranging from -3 to 3
and specify a computational grid of 49-by-49.

ezcontour(f,[-3,3],49)

4-231

ezcontour

In this particular case, the title is too long to fit at the top of the graph
so MATLAB abbreviates the string.

See Also contour | ezcontourf | ezmesh | ezmeshc | ezplot | ezplot3 |
ezpolar | ezsurf | ezsurfc

4-232

ezcontourf

Purpose Filled contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontourf(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a sym that
represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezcontourf(u^2 - v^3,[0,1],[3,6]) plots the
contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

ezcontourf(...,n) plots f over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontourf automatically adds a title and axis labels.

Examples The following mathematical expression defines a function of two
variables, x and y.

f x y x e
x

x y e ex y x y x(,) () () (= − − − −⎛
⎝⎜

⎞
⎠⎟

−− − + − − − +3 1 10
5

1
3

2 2 1 2 3 5 2 2 1)) .
2 2−y

ezcontourf requires a sym argument that expresses this function
using MATLAB syntax to represent exponents, natural logs, etc. This
function is represented by the symbolic expression

4-233

ezcontourf

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...

- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
- 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontourf along with a domain ranging from -3 to
3 and specify a grid of 49-by-49.

ezcontourf(f,[-3,3],49)

4-234

ezcontourf

In this particular case, the title is too long to fit at the top of the graph
so MATLAB abbreviates the string.

See Also contourf | ezcontour | ezmesh | ezmeshc | ezplot | ezplot3 |
ezpolar | ezsurf | ezsurfc

4-235

ezmesh

Purpose 3-D mesh plotter

Syntax ezmesh(f)
ezmesh(f, domain)
ezmesh(x,y,z)
ezmesh(x,y,z,[smin,smax,tmin,tmax])
ezmesh(x,y,z,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')

Description ezmesh(f) creates a graph of f(x,y), where f is a symbolic expression
that represents a mathematical function of two variables, such as x
and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezmesh(f, domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezmesh(u^2 - v^3,[0,1],[3,6]) plots u2 - v3

over 0 < u < 1, 3 < v < 6.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z =
z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or
ezmesh(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezmesh(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezmesh(...,'circ') plots f over a disk centered on the domain.

4-236

ezmesh

Examples This example visualizes the function,

f x y xe x y(,) ,= − −2 2

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a
uniform blue color by setting the colormap to a single color.

syms x y
ezmesh(x*exp(-x^2-y^2),[-2.5,2.5],40)
colormap([0 0 1])

4-237

ezmesh

See Also ezcontour | ezcontourf | ezmeshc | ezplot | ezplot3 | ezpolar |
ezsurf | ezsurfc | mesh

4-238

ezmeshc

Purpose Combined mesh and contour plotter

Syntax ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,[smin,smax,tmin,tmax])
ezmeshc(x,y,z,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')

Description ezmeshc(f) creates a graph of f(x,y), where f is a symbolic expression
that represents a mathematical function of two variables, such as x
and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezmeshc(f,domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezmeshc(u^2 - v^3,[0,1],[3,6]) plots u2 – v3

over 0 < u < 1, 3 < v < 6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z
= z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or
ezmeshc(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezmeshc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezmeshc(...,'circ') plots f over a disk centered on the domain.

4-239

ezmeshc

Examples Create a mesh/contour graph of the expression,

f x y
y

x y
(,) ,=

+ +1 2 2

over the domain –5 < x < 5, –2π < y < 2π.

syms x y
ezmeshc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi])

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = –65 and elevation = 26).

4-240

ezmeshc

See Also ezcontour | ezcontourf | ezmesh | ezplot | ezplot3 | ezpolar |
ezsurf | ezsurfc | meshc

4-241

ezplot

Purpose Plot symbolic expression, equation, or function

Syntax ezplot(f)
ezplot(f,[min,max])
ezplot(f,[xmin,xmax,ymin,ymax])
ezplot(f,fign)
ezplot(x,y)
ezplot(x,y,[tmin,tmax])
ezplot(f,figure_handle)

Description ezplot(f) plots a symbolic expression, equation, or function f. By
default, ezplot plots a univariate expression or function over the range
[–2π 2π] or over a subinterval of this range. If f is an equation or
function of two variables, the default range for both variables is [–2π 2π]
or over a subinterval of this range.

ezplot(f,[min,max]) plots f over the specified range. If f is a
univariate expression or function, then [min,max] specifies the range
for that variable. This is the range along the abscissa (horizontal
axis). If f is an equation or function of two variables, then [min,max]
specifies the range for both variables, that is the ranges along both the
abscissa and the ordinate.

ezplot(f,[xmin,xmax,ymin,ymax]) plots f over the specified ranges
along the abscissa and the ordinate. For this syntax, f needs two
variables. If f is univariate, this syntax throws an error.

ezplot(f,fign) displays the plot in the plot window with the number
fign. The title of each plot window contains the word Figure and the
number, for example, Figure 1, Figure 2, and so on. If the plot window
with the number fign is already opened, ezplot overwrites the content
of that window with the new plot.

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and
y = y(t) over the default range 0 <= t <= 2π or over a subinterval of
this range.

ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over the specified
range tmin <= t <= tmax.

4-242

ezplot

ezplot(f,figure_handle) plots f in the plot window identified by the
handle figure_handle.

Tips • If you do not specify a plot range, ezplot uses the interval [–2π 2π] as
a starting point. Then it can choose to display a part of the plot over
a subinterval of [–2π 2π] where the plot has significant variation.
Also, when selecting the plotting range, ezplot omits extreme values
associated with singularities.

• ezplot open a plot window and displays a plot there. If any plot
windows are already open, ezplot does not create a new window.
Instead, it displays the new plot in the currently active window.
(Typically, it is the window with the highest number.) To display the
new plot in a new plot window or in an existing window other than
that with highest number, use fign.

• If f is an equation or function of two variables, then the alphabetically
first variable defines the abscissa (horizontal axis) and the other
variable defines the ordinate (vertical axis). Thus, ezplot(x^2 ==
a^2,[-3,3,-2,2]) creates the plot of the equation x2 = a2 with
–3 <= a <= 3 along the horizontal axis, and –2 <= x <= 2 along the
vertical axis.

Input
Arguments

f

Symbolic expression, equation, or function.

[min,max]

Numbers specifying the plotting range. For a univariate expression or
function, the plotting range applies to that variable. For an equation or
function of two variables, the plotting range applies to both variables.
In this case, the range is the same for the abscissa and the ordinate.

Default: [-2*pi,2*pi] or its subinterval.

[xmin,xmax,ymin,ymax]

4-243

ezplot

Numbers specifying the plotting range along the abscissa (first two
numbers) and the ordinate (last two numbers).

Default: [-2*pi,2*pi,-2*pi,2*pi] or its subinterval.

fign

Number of the figure window where you want to display a plot.

Default: If no plot windows are open, then 1. If one plot window
is open, then the number in the title of that window. If more than
one plot window is open, then the highest number in the titles
of open windows.

x,y

Symbolic expressions or functions defining a parametric curve x = x(t)
and y = y(t).

[tmin,tmax]

Numbers specifying the plotting range for a parametric curve.

Default: [0,2*pi] or its subinterval.

figure_handle

Figure handle specifying the plot window in which you create or modify
a plot.

Default: Current figure handle returned by gcf.

Examples Plot the expression erf(x)*sin(x) over the range [–π, π]:

syms x
ezplot(erf(x), [-pi, pi])

4-244

ezplot

Plot this equation over the default range:

syms x y
ezplot(x^2 == y^4)

4-245

ezplot

Create this symbolic function f(x, y):

syms x y
f(x, y) = sin(x + y)*sin(x*y);

Plot this function over the default range:

ezplot(f)

4-246

ezplot

Plot this parametric curve:

syms t
x = t*sin(5*t);
y = t*cos(5*t);
ezplot(x, y)

4-247

ezplot

See Also ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot3 |
ezpolar | ezsurf | ezsurfc | plot

Concepts • “Create Plots” on page 2-112

4-248

ezplot3

Purpose 3-D parametric curve plotter

Syntax ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(...,'animate')

Description ezplot3(x,y,z) plots the spatial curve x = x(t), y = y(t), and z = z(t)
over the default domain 0 < t < 2π.

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(t), y = y(t), and z =
z(t) over the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial
curve.

Examples Plot the parametric curve x = sin(t), y = cos(t), z = t over the domain
[0, 6π].

syms t
ezplot3(sin(t), cos(t), t,[0,6*pi])

4-249

ezplot3

See Also ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar |
ezsurf | ezsurfc | plot3

4-250

ezpolar

Purpose Polar coordinate plotter

Syntax ezpolar(f)
ezpolar(f, [a, b])

Description ezpolar(f) plots the polar curve r = f(θ) over the default domain
0 < θ < 2π.

ezpolar(f, [a, b]) plots f for a < θ < b.

Examples This example creates a polar plot of the function,

1 + cos(t)

over the domain [0, 2π].

syms t
ezpolar(1 + cos(t))

4-251

ezpolar

4-252

ezsurf

Purpose 3-D colored surface plotter

Syntax ezsurf(f)
ezsurf(f,domain)
ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax,tmin,tmax])
ezsurf(x,y,z,[min,max])
ezsurf(...,n)
ezsurf(...,'circ')

ezsurf(f) plots over the default domain –2π < x < 2π, –2π < y < 2π.
MATLAB software chooses the computational grid according to the
amount of variation that occurs; if the function f is not defined (singular)
for points on the grid, then these points are not plotted.

ezsurf(f,domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezsurf(u^2 - v^3,[0,1],[3,6]) plots u2 – v3

over 0 < u < 1, 3 < v < 6.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z =
z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezsurf(x,y,z,[smin,smax,tmin,tmax]) or
ezsurf(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezsurf(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurf(...,'circ') plots f over a disk centered on the domain.

Examples ezsurf does not graph points where the mathematical function is not
defined (these data points are set to NaNs, which MATLAB does not plot).
This example illustrates this filtering of singularities/discontinuous
points by graphing the function,

4-253

ezsurf

f(x,y) = real(atan(x + iy))

over the default domain –2π < x < 2π, –2π < y < 2π.

syms x y
ezsurf(real(atan(x+i*y)))

Note also that ezsurf creates graphs that have axis labels, a title, and
extend to the axis limits.

4-254

ezsurf

See Also ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar |
ezsurfc | surf

4-255

ezsurfc

Purpose Combined surface and contour plotter

Syntax ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,[smin,smax,tmin,tmax])
ezsurfc(x,y,z,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')

Description ezsurfc(f) creates a graph of f(x,y), where f is a symbolic expression
that represents a mathematical function of two variables, such as x
and y.

The function f is plotted over the default domain –2π < x < 2π,
–2π < y < 2π. MATLAB software chooses the computational grid
according to the amount of variation that occurs; if the function f is
not defined (singular) for points on the grid, then these points are not
plotted.

ezsurfc(f,domain) plots f over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min,
max] (where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y),
then the domain endpoints umin, umax, vmin, and vmax are sorted
alphabetically. Thus, ezsurfc(u^2 - v^3,[0,1],[3,6]) plots u2 – v3

over 0 < u < 1, 3 < v < 6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z
= z(s,t) over the square –2π < s < 2π, –2π < t < 2π.

ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or
ezsurfc(x,y,z,[min,max]) plots the parametric surface using the
specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

4-256

ezsurfc

Examples Create a surface/contour plot of the expression,

f x y
y

x y
(,) ,=

+ +1 2 2

over the domain –5 < x < 5, –2π < y < 2π, with a computational grid
of size 35-by-35

syms x y
ezsurfc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi],35)

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65 and elevation = 26).

4-257

ezsurfc

See Also ezcontour | ezcontourf | ezmesh | ezmeshc | ezplot | ezpolar |
ezsurf | surfc

4-258

factor

Purpose Factorization

Syntax factor(X)

Description factor(X) can take a positive integer, an array of symbolic expressions,
or an array of symbolic integers as an argument. If N is a positive
integer, factor(N) returns the prime factorization of N.

If S is a matrix of polynomials or integers, factor(S) factors each
element. If any element of an integer array has more than 16 digits,
you must use sym to create that element, for example, sym('N').

Examples Factorize the two-variable expression:

syms x y
factor(x^3-y^3)

ans =
(x - y)*(x^2 + x*y + y^2)

Factorize the expressions that form a vector:

syms a b
factor([a^2 - b^2, a^3 + b^3])

ans =
[(a - b)*(a + b), (a + b)*(a^2 - a*b + b^2)]

Factorize the symbolic number:

factor(sym('12345678901234567890'))

ans =
2*3^2*5*101*3541*3607*3803*27961

See Also collect | expand | horner | numden | rewrite | simplify |
simplifyFraction

4-259

factorial

Purpose Factorial function

Syntax factorial(n)
factorial(A)

Description factorial(n) returns the factorial of n.

factorial(A) returns the factorials of each element of A.

Tips • Calling factorial for a number that is not a symbolic object invokes
the MATLAB factorial function.

Input
Arguments

n

Symbolic variable or expression representing a nonnegative integer.

A

Vector or matrix of symbolic variables or expressions representing
nonnegative integers.

Definitions Factorial Function

This product defines the factorial function of a positive integer:

n k
k

n
!

1

The factorial function 0! = 1.

Examples Compute the factorial function for these expressions:

syms n
f = factorial(n^2 + 1)

f =
factorial(n^2 + 1)

4-260

factorial

Now substitute the variable n with the value 3:

subs(f, n, 3)

ans =
3628800

Differentiate the expression involving the factorial function:

syms n
diff(factorial(n^2 + n + 1))

ans =
factorial(n^2 + n + 1)*psi(n^2 + n + 2)*(2*n + 1)

Expand the expression involving the factorial function:

syms n
expand(factorial(n^2 + n + 1))

ans =
factorial(n^2 + n)*(n^2 + n + 1)

Compute the limit for the expression involving the factorial function:

syms n
limit(factorial(n)/exp(n), n, inf)

ans =
Inf

Call factorial for the matrix A. The result is a matrix of the factorial
functions:

4-261

factorial

A = sym([1 2; 3 4]);
factorial(A)

ans =
[1, 2]
[6, 24]

See Also beta | gamma | mfun | mfunlist | nchoosek | psi

How To • “Special Functions of Applied Mathematics” on page 2-142

4-262

feval

Purpose Evaluate MuPAD expressions specifying their arguments

Syntax result = feval(symengine,F,x1,...,xn)
[result,status] = feval(symengine,F,x1,...,xn)

Description result = feval(symengine,F,x1,...,xn) evaluates F, which is
either a MuPAD function name or a symbolic object, with arguments
x1,...,xn, with result a symbolic object. If F with the arguments
x1,...,xn throws an error in MuPAD, then this syntax throws an
error in MATLAB.

[result,status] = feval(symengine,F,x1,...,xn) lets you catch
errors thrown by MuPAD. This syntax returns the error status in
status, and the error message in result if status is nonzero. If
status is 0, result is a symbolic object. Otherwise, result is a string.

Tips • Results returned by feval can differ from the results that you get
using a MuPAD notebook directly. The reason is that feval sets a
lower level of evaluation to achieve better performance.

Input
Arguments

F

MuPAD function name or symbolic object.

x1,...,xn

Arguments of F.

Output
Arguments

result

Symbolic object or string containing a MuPAD error message.

status

Integer indicating the error status. If F with the arguments x1,...,xn
executes without errors, the error status is 0.

4-263

feval

Examples syms a b c x
p = a*x^2+b*x+c;
feval(symengine,'polylib::discrim', p, x)

ans =
b^2 - 4*a*c

Alternatively, the same calculation based on variables not defined in
the MATLAB workspace is:

feval(symengine,'polylib::discrim', 'a*x^2 + b*x + c', 'x')

ans =
b^2 - 4*a*c

Try using polylib::discrim to compute the discriminant of the
following nonpolynomial expression:

[result, status] = feval(symengine,'polylib::discrim',
'a*x^2 + b*x + c*ln(x)', 'x')

result =
Error: An arithmetical expression is expected. [normal]

status =
2

Alternatives evalin lets you evaluate MuPAD expressions without explicitly
specifying their arguments.

See Also evalin | read | symengine

Related
Examples

• “Call Built-In MuPAD Functions from MATLAB Command Window”
on page 3-32

4-264

feval

Concepts • “Evaluations in Symbolic Computations”
• “Level of Evaluation”

4-265

findsym

Purpose Find symbolic variables in symbolic expression, matrix, or function

Note findsym is not recommended. Use symvar instead.

Syntax findsym(s)
findsym(s,n)

Description findsym(s) returns a string containing all symbolic variables in s in
alphabetical order, separated by commas. If s does not contain any
variables, findsym returns an empty string.

findsym(s,n) returns n symbolic variables in s alphabetically closest
to x. If s is a symbolic function, findsym(s,n) returns the input
arguments of s in front of other free variables in s.

Tips • findsym(s) can return variables in a different order than
findsym(s,n).

• findsym does treat the constants pi, i, and j as variables.

• If there are no symbolic variables in s, findsym returns the empty
vector.

Input
Arguments

s

Symbolic expression, matrix, or function.

n

Integer.

Algorithms When sorting the symbolic variables by their proximity to x, findsym
uses this algorithm:

1 The variables are sorted by the first letter in their names. The
ordering is x y w z v u ... a X Y W Z V U ... A. The name of a symbolic
variable cannot begin with a number.

4-266

findsym

2 For all subsequent letters, the ordering is alphabetical,
with all uppercase letters having precedence over lowercase:
0 1 ... 9 A B ... Z a b ... z.

See Also symvar

4-267

finverse

Purpose Functional inverse

Syntax g = finverse(f)
g = finverse(f,var)

Description g = finverse(f) returns the functional inverse of f. Here f is
an expression or function of one symbolic variable, for example, x.
Then g is an expression or function, such that f(g(x)) = x. That is,
finverse(f) returns f–1, provided f–1 exists.

g = finverse(f,var) uses the symbolic variable var as the
independent variable. Then g is an expression or function, such that
f(g(var)) = var. Use this form when f contains more than one
symbolic variable.

Tips • finverse does not issue a warning when the inverse is not unique.

Input
Arguments

f

Symbolic expression or function.

var

Symbolic variable.

Output
Arguments

g

Symbolic expression or function.

Examples Compute functional inverse for this trigonometric function:

syms x
f(x) = 1/tan(x);
g = finverse(f)

g(x) =
atan(1/x)

4-268

finverse

Compute functional inverse for this exponent function:

syms u v
finverse(exp(u - 2*v), u)

ans =
2*v + log(u)

See Also compose | syms

4-269

fix

Purpose Round toward zero

Syntax fix(X)

Description fix(X) is the matrix of the integer parts of X.

fix(X) = floor(X) if X is positive and ceil(X) if X is negative.

See Also round | ceil | floor | frac

4-270

floor

Purpose Round symbolic matrix toward negative infinity

Syntax floor(X)

Description floor(X) is the matrix of the greatest integers less than or equal to X.

Examples x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also round | ceil | fix | frac

4-271

formula

Purpose Mathematical expression defining symbolic function

Syntax formula(f)

Description formula(f) returns the mathematical expression that defines f.

Input
Arguments

f

Symbolic function.

Examples Create this symbolic function:

syms x y
f(x, y) = x + y;

Use formula to find the mathematical expression that defines f:

formula(f)

ans =
x + y

Create this symbolic function:

syms f(x, y)

If you do not specify a mathematical expression for the symbolic
function, formula returns the symbolic function definition as follows:

formula(f)

ans =
f(x, y)

See Also argnames | sym | syms | symvar

4-272

fortran

Purpose Fortran representation of symbolic expression

Syntax fortran(S)
fortran(S,'file',fileName)

Description fortran(S) returns the Fortran code equivalent to the expression S.

fortran(S,'file',fileName) writes an “optimized” Fortran
code fragment that evaluates the symbolic expression S to the file
named fileName. “Optimized” means intermediate variables are
automatically generated in order to simplify the code. MATLAB
generates intermediate variables as a lowercase letter t followed by an
automatically generated number, for example t32.

Examples The statements

syms x
f = taylor(log(1+x));
fortran(f)

return

ans =

t0 = x-x**2*(1.0D0/2.0D0)+x**3*(1.0D0/3.0D0)-x**4*(1.0D0/4.0D0)+x*

+*5*(1.0D0/5.0D0)

The statements

H = sym(hilb(3));
fortran(H)

return

ans =
H(1,1) = 1.0D0
H(1,2) = 1.0D0/2.0D0
H(1,3) = 1.0D0/3.0D0
H(2,1) = 1.0D0/2.0D0

4-273

fortran

H(2,2) = 1.0D0/3.0D0
H(2,3) = 1.0D0/4.0D0
H(3,1) = 1.0D0/3.0D0
H(3,2) = 1.0D0/4.0D0
H(3,3) = 1.0D0/5.0D0

The statements

syms x
z = exp(-exp(-x));
fortran(diff(z,3),'file','fortrantest');

return a file named fortrantest containing the following:

t7 = exp(-x)
t8 = exp(-t7)
t0 = t8*exp(x*(-2))*(-3)+t8*exp(x*(-3))+t7*t8

See Also ccode | latex | matlabFunction | pretty

4-274

fourier

Purpose Fourier transform

Syntax fourier(f,trans_var,eval_point)

Description fourier(f,trans_var,eval_point) computes the Fourier transform
of f with respect to the transformation variable trans_var at the
point eval_point.

Tips • If you call fourier with two arguments, it assumes that the second
argument is the evaluation point eval_point.

• If f is a matrix, fourier applies the Fourier transform to all
components of the matrix.

• To compute the inverse Fourier transform, use ifourier.

Input
Arguments

f

Symbolic expression, symbolic function, or vector or matrix of symbolic
expressions or functions.

trans_var

Symbolic variable representing the transformation variable. This
variable is often called the “time variable” or the “space variable”.

Default: The variable determined by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This
variable is often called the “frequency variable”.

Default: The variable w. If w is the transformation variable of f,
then the default evaluation point is the variable v.

4-275

fourier

Definitions Fourier Transform

The Fourier transform of the expression f = f(x) with respect to the
variable x at the point w is defined as follows:

F w c f x e dxiswx

 .

Here c and s are parameters of the Fourier transform. The fourier
function uses c = 1, s = –1.

Examples Compute the Fourier transform of this expression with respect to the
variable x at the evaluation point y:

syms x y
f = exp(-x^2);
fourier(f, x, y)

ans =
pi^(1/2)*exp(-y^2/4)

Compute the Fourier transform of this expression calling the fourier
function with one argument. If you do not specify the transformation
variable, it is determined by symvar. For this expression, symvar
chooses x as the transformation variable.

syms x t y
f = exp(-x^2)*exp(-t^2);
fourier(f, y)

ans =
pi^(1/2)*exp(-t^2)*exp(-y^2/4)

If you also do not specify the evaluation point, fourier uses the
variable w:

4-276

fourier

fourier(f)

ans =
pi^(1/2)*exp(-t^2)*exp(-w^2/4)

Compute the following Fourier transforms that involve the Dirac,
Heaviside, and piecewise functions:

syms t w
fourier(t^3, t, w)

ans =
-pi*dirac(w, 3)*2*i

syms t0
fourier(heaviside(t - t0), t, w)

ans =
exp(-t0*w*i)*(pi*dirac(w) - i/w)

assume(x,'real')
f = exp(-x^2*abs(t))*sin(t)/t;
fourier(f, t, w)

ans =
piecewise([x ~= 0, atan((w + 1)/x^2) - atan((w - 1)/x^2)])

If fourier cannot find an explicit representation of the transform, it
returns an unevaluated call:

syms f(t) w
F = fourier(f, t, w)

F(w) =
fourier(f(t), t, w)

4-277

fourier

ifourier returns the original expression:

ifourier(F, w, t)

ans(t) =
f(t)

The Fourier transform of a function is related to the Fourier transform
of its derivative:

syms f(t) w
fourier(diff(f(t), t), t, w)

ans =
w*fourier(f(t), t, w)*i

References Oberhettinger F., “Tables of Fourier Transforms and Fourier
Transforms of Distributions”, Springer, 1990.

See Also ifourier | ilaplace | iztrans | laplace | ztrans

Concepts • “Compute Fourier and Inverse Fourier Transforms” on page 2-94

4-278

frac

Purpose Symbolic matrix element-wise fractional parts

Syntax frac(X)

Description frac(X) is the matrix of the fractional parts of the elements: frac(X)
= X - fix(X).

Examples x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also round | ceil | floor | fix

4-279

funtool

Purpose Function calculator

Syntax funtool

Description funtool is a visual function calculator that manipulates and displays
functions of one variable. At the click of a button, for example, funtool
draws a graph representing the sum, product, difference, or ratio of two
functions that you specify. funtool includes a function memory that
allows you to store functions for later retrieval.

At startup, funtool displays graphs of a pair of functions, f(x) = x
and g(x) = 1. The graphs plot the functions over the domain [-2*pi,
2*pi]. funtool also displays a control panel that lets you save, retrieve,
redefine, combine, and transform f and g.

4-280

funtool

Text Fields

The top of the control panel contains a group of editable text fields.

f= Displays a symbolic expression representing f. Edit
this field to redefine f.

g= Displays a symbolic expression representing g. Edit
this field to redefine g.

4-281

funtool

x= Displays the domain used to plot f and g. Edit this
field to specify a different domain.

a= Displays a constant factor used to modify f (see
button descriptions in the next section). Edit this
field to change the value of the constant factor.

funtool redraws f and g to reflect any changes you make to the
contents of the control panel’s text fields.

Control Buttons

The bottom part of the control panel contains an array of buttons that
transform f and perform other operations.

The first row of control buttons replaces f with various transformations
of f.

df/dx Derivative of f

int f Integral of f

simplify f Simplified form of f, if possible

num f Numerator of f

den f Denominator of f

1/f Reciprocal of f

finv Inverse of f

The operators int f and finv can fail if the corresponding symbolic
expressions do not exist in closed form.

The second row of buttons translates and scales f and the domain of f
by a constant factor. To specify the factor, enter its value in the field
labeled a= on the calculator control panel. The operations are

4-282

funtool

f+a Replaces f(x) by f(x) + a.

f-a Replaces f(x) by f(x) - a.

f*a Replaces f(x) by f(x) * a.

f/a Replaces f(x) by f(x) / a.

f^a Replaces f(x) by f(x) ^ a.

f(x+a) Replaces f(x) by f(x + a).

f(x*a) Replaces f(x) by f(x * a).

The first four buttons of the third row replace f with a combination
of f and g.

f+g Replaces f(x) by f(x) + g(x).

f-g Replaces f(x) by f(x)-g(x).

f*g Replaces f(x) by f(x) * g(x).

f/g Replaces f(x) by f(x) / g(x).

The remaining buttons on the third row interchange f and g.

g=f Replaces g with f.

swap Replaces f with g and g with f.

The first three buttons in the fourth row allow you to store and retrieve
functions from the calculator’s function memory.

Insert Adds f to the end of the list of stored functions.

Cycle Replaces f with the next item on the function list.

Delete Deletes f from the list of stored functions.

The other four buttons on the fourth row perform miscellaneous
functions:

4-283

funtool

Reset Resets the calculator to its initial state.

Help Displays the online help for the calculator.

Demo Runs a short demo of the calculator.

Close Closes the calculator’s windows.

See Also ezplot | syms

4-284

gamma

Purpose Gamma function

Syntax gamma(x)
gamma(A)

Description gamma(x) returns the gamma function of a symbolic variable or
symbolic expression x.

gamma(A) returns the gamma function of the elements of a symbolic
vector or a symbolic matrix A.

Input
Arguments

x

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions gamma Function

The following integral defines the gamma function:

Γ z t e dtz t() = − −
∞

∫ 1

0

.

Examples Differentiate the gamma function, and then substitute the variable
t with the value 1:

syms t
u = diff(gamma(t^3 + 1))
u1 = subs(u, 1)

u =
3*t^2*gamma(t^3 + 1)*psi(t^3 + 1)

u1 =

4-285

gamma

3 - 3*eulergamma

Approximate the result using vpa:

vpa(u1, 10)

ans =
1.268353005

Compute the limit of the following expression that involves the gamma
function:

syms x
limit(x/gamma(x), x, inf)

ans =
0

Simplify the following expression:

syms x
simplify(gamma(x)*gamma(1 - x))

ans =
pi/sin(pi*x)

See Also beta | factorial | mfun | mfunlist | nchoosek | psi

How To • “Special Functions of Applied Mathematics” on page 2-142

4-286

ge

Purpose Define greater than or equal to relation

Syntax A >= B
ge(A,B)

Description A >= B creates a greater than or equal to relation.

ge(A,B) is equivalent to A >= B.

Tips • If A and B are both numbers, then A >= B compares A and B and
returns logical 1 (true) or logical 0 (false). Otherwise, A >= B
returns a symbolic greater than or equal to relation. You can use that
relation as an argument for such functions as assume, assumeAlso,
and subs.

• If both A and B are arrays, then these arrays must have
the same dimensions. A >= B returns an array of relations
A(i,j,...)>=B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is
expanded into an array of the same dimensions as the other array.
In other words, if A is a variable (for example, x), and B is an m-by-n
matrix, then A is expanded into m-by-n matrix of elements, each
set to x.

• The field of complex numbers is not an ordered field. MATLAB
projects complex numbers in relations to a real axis. For example, x
>= i becomes x >= 0, and x >= 3 + 2*i becomes x >= 3.

Input
Arguments

A

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

B

4-287

ge

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

Examples Use assume and the relational operator >= to set the assumption that x
is greater than or equal to 3:

syms x
assume(x >= 3)

Solve this equation. The solver takes into account the assumption on
variable x, and therefore returns these two solutions.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =
3
4

Use the relational operator >= to set this condition on variable x:

syms x
cond = (abs(sin(x)) >= 1/2);

for i = 0:sym(pi/12):sym(pi)
if subs(cond, x, i)

disp(i)
end

end

Use the for loop with step π/24 to find angles from 0 to π that satisfy
that condition:

pi/6
pi/4
pi/3
(5*pi)/12

4-288

ge

pi/2
(7*pi)/12
(2*pi)/3
(3*pi)/4
(5*pi)/6

Alternatives You can also define this relation by combining an equation and a greater
than relation. Thus, A >= B is equivalent to (A > B) & (A == B).

See Also eq | gt | isAlways | le | logical | lt | ne

Concepts • “Set Assumptions” on page 1-35

4-289

getVar

Purpose Get variable from MuPAD notebook

Syntax y = getVar(nb,'z')

Description y = getVar(nb,'z') assigns the symbolic variable z in the MuPAD
notebook nb to a symbolic variable y in the MATLAB workspace.

Examples Start a new MuPAD notebook and define a handle mpnb to that
notebook:

mpnb = mupad;

In the MuPAD notebook, enter the command f:=x^2. This command
creates the variable f and assigns the value x^2 to this variable. At this
point, the variable and its value exist only in MuPAD. Now, return to
the MATLAB Command Window and use the getVar function:

f = getVar(mpnb,'f')

After you use getVar, the variable f appears in the MATLAB
workspace. The value of the variable f is x^2.

See Also mupad | setVar

4-290

gradient

Purpose Gradient vector of scalar function

Syntax gradient(f,x)
gradient(f)

Description gradient(f,x) computes the gradient vector of the scalar function f
with respect to vector x in Cartesian coordinates.

gradient(f) computes the gradient vector of the scalar function f with
respect to a vector constructed from all symbolic variables found in f.
The order of variables in this vector is defined by symvar.

Tips • If x is a scalar, gradient(f, x) = diff(f, x).

Input
Arguments

f

Scalar function represented by symbolic expression or symbolic function.

x

Vector with respect to which you compute the gradient vector.

Default: Vector constructed from all symbolic variables found in
f. The order of variables in this vector is defined by symvar.

Definitions Gradient Vector

The gradient vector of f(x) with respect to the vector x is the vector of
the first partial derivatives of f:

f

f
x

f
x

f
xn1 2

, , ,

Examples Compute the gradient vector of f(x, y, z) with respect to vector [x,
y, z]:

syms x y z

4-291

gradient

f = 2*y*z*sin(x) + 3*x*sin(z)*cos(y);
gradient(f, [x, y, z])

The gradient is a vector with these components:

ans =
3*cos(y)*sin(z) + 2*y*z*cos(x)
2*z*sin(x) - 3*x*sin(y)*sin(z)
2*y*sin(x) + 3*x*cos(y)*cos(z)

Compute the gradient vector of f(x, y, z) with respect to vector
[x, y]:

syms x y
f = -(sin(x) + sin(y))^2;
g = gradient(f, [x, y])

The gradient is vector g with these components:

g =
-2*cos(x)*(sin(x) + sin(y))
-2*cos(y)*(sin(x) + sin(y))

Now plot the vector field defined by these components. MATLAB
provides the quiver plotting function for this task. The function does
not accept symbolic arguments. First, replace symbolic variables in
expressions for components of g with numeric values. Then use quiver:

[X, Y] = meshgrid(-1:.1:1,-1:.1:1);
G1 = subs(g(1), [x y], {X,Y}); G2 = subs(g(2), [x y], {X,Y});
quiver(X, Y, G1, G2)

4-292

gradient

See Also curl | divergence | diff | hessian | jacobian | laplacian |
potential | quiver | vectorPotential

4-293

gt

Purpose Define greater than relation

Syntax A > B
gt(A,B)

Description A > B creates a greater than relation.

gt(A,B) is equivalent to A > B.

Tips • If A and B are both numbers, then A > B compares A and B and
returns logical 1 (true) or logical 0 (false). Otherwise, A > B returns
a symbolic greater than relation. You can use that relation as an
argument for such functions as assume, assumeAlso, and subs.

• If both A and B are arrays, then these arrays must have
the same dimensions. A > B returns an array of relations
A(i,j,...)>B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is
expanded into an array of the same dimensions as the other array.
In other words, if A is a variable (for example, x), and B is an m-by-n
matrix, then A is expanded into m-by-n matrix of elements, each
set to x.

• The field of complex numbers is not an ordered field. MATLAB
projects complex numbers in relations to a real axis. For example, x
> i becomes x > 0, and x > 3 + 2*i becomes x > 3.

Input
Arguments

A

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

4-294

gt

Examples Use assume and the relational operator > to set the assumption that
x is greater than 3:

syms x
assume(x > 3)

Solve this equation. The solver takes into account the assumption on
variable x, and therefore returns this solution.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =
4

Use the relational operator > to set this condition on variable x:

syms x
cond = abs(sin(x)) + abs(cos(x)) > 7/5;

for i= 0:sym(pi/24):sym(pi)
if subs(cond, x, i)

disp(i)
end

end

Use the for loop with step π/24 to find angles from 0 to π that satisfy
that condition:

(5*pi)/24
pi/4
(7*pi)/24
(17*pi)/24
(3*pi)/4
(19*pi)/24

See Also eq | ge | isAlways | le | logical | lt | ne

4-295

gt

Concepts • “Set Assumptions” on page 1-35

4-296

heaviside

Purpose Heaviside step function

Syntax heaviside(x)

Description heaviside(x) has the value 0 for x < 0, 1 for x > 0, and 0.5 for x = 0.

Examples For x < 0 the function heaviside(x) returns 0:

heaviside(sym(-3))

ans =
0

For x > 0 the function, heaviside(x) returns 1:

heaviside(sym(3))

ans =
1

For x = 0 the function, heaviside(x) returns 1/2:

heaviside(sym(0))

ans =
1/2

For numeric x = 0 the function, heaviside(x) returns the numeric
result:

heaviside(0)

ans =
0.5000

See Also dirac

4-297

hessian

Purpose Hessian matrix of scalar function

Syntax hessian(f,x)
hessian(f)

Description hessian(f,x) computes the Hessian matrix of the scalar function f
with respect to vector x in Cartesian coordinates.

hessian(f) computes the Hessian matrix of the scalar function f with
respect to a vector constructed from all symbolic variables found in f.
The order of variables in this vector is defined by symvar.

Input
Arguments

f

Scalar function represented by symbolic expression or symbolic function.

x

Vector with respect to which you compute the Hessian matrix.

Default: Vector constructed from all symbolic variables found in
f. The order of variables in this vector is defined by symvar.

Definitions Hessian Matrix

The Hessian matrix of f(x) is the square matrix of the second partial
derivatives of f(x):

H f

f

x

f
x x

f
x x

f
x x

f

x

f
x x

n

n()

2

1
2

2

1 2

2

1

2

2 1

2

2
2

2

2

2

1

2

2

2

2
f

x x
f

x x
f

xn n n

4-298

hessian

Examples Compute the Hessian of this function of three variables:

syms x y z
f = x*y + 2*z*x;
hessian(f)

ans =
[0, 1, 2]
[1, 0, 0]
[2, 0, 0]

You also can compute the Hessian matrix of a scalar function as the
Jacobian of the gradient of that function:

syms x y z
f = x*y + 2*z*x;
jacobian(gradient(f))

ans =
[0, 1, 2]
[1, 0, 0]
[2, 0, 0]

See Also curl | divergence | diff | gradient | jacobian | laplacian |
potential | vectorPotential

4-299

horner

Purpose Horner nested polynomial representation

Syntax horner(P)

Description Suppose P is a matrix of symbolic polynomials. horner(P) transforms
each element of P into its Horner, or nested, representation.

Examples Find nested polynomial representation of the polynomial:

syms x
horner(x^3-6*x^2+11*x-6)

The result is

ans =
x*(x*(x - 6) + 11) - 6

Find nested polynomial representation for the polynomials that form a
vector:

syms x y
horner([x^2+x;y^3-2*y])

The result is:

ans =
x*(x + 1)

y*(y^2 - 2)

See Also collect | expand | factor | numden | rewrite | simplify |
simplifyFraction

4-300

hypergeom

Purpose Generalized hypergeometric

Syntax hypergeom(n,d,z)

Description hypergeom(n,d,z) is the generalized hypergeometric function F(n, d,
z), also known as the Barnes extended hypergeometric function and
denoted by jFk where j = length(n) and k = length(d). For scalar a,
b, and c, hypergeom([a,b],c,z) is the Gauss hypergeometric function

2F1(a,b;c;z).

The definition by a formal power series is

F n d z
C

C
z
k

n k

d kk

k
(, ,)

!
,,

,
= ⋅

=

∞

∑
0

where

C
v k

vv k
j

jj

v

,
()

()
.=

+

=
∏

Γ
Γ1

Either of the first two arguments may be a vector providing the
coefficient parameters for a single function evaluation. If the third
argument is a vector, the function is evaluated point-wise. The result
is numeric if all the arguments are numeric and symbolic if any of the
arguments is symbolic.

Examples Compute hypergeometric functions:

syms a z
q = hypergeom([],[],z)
r = hypergeom(1,[],z)
s = hypergeom(a,[],z)

The results are:

q =

4-301

hypergeom

exp(z)

r =
-1/(z - 1)

s =
1/(1 - z)^a

References Oberhettinger, F. “Hypergeometric Functions.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

4-302

ifourier

Purpose Inverse Fourier transform

Syntax ifourier(F,trans_var,eval_point)

Description ifourier(F,trans_var,eval_point) computes the inverse Fourier
transform of F with respect to the transformation variable trans_var
at the point eval_point.

Tips • If you call ifourier with two arguments, it assumes that the second
argument is the evaluation point eval_point.

• If F is a matrix, ifourier applies the inverse Fourier transform to
all components of the matrix.

• The toolbox computes the inverse Fourier transform via the direct
Fourier transform:

ifourier F w t fourier F w t, , , , 1
2

If ifourier cannot find an explicit representation of the inverse
Fourier transform, it returns results in terms of the direct Fourier
transform.

• To compute the direct Fourier transform, use fourier.

Input
Arguments

F

Symbolic expression, symbolic function, or vector or matrix of symbolic
expressions or functions.

trans_var

Symbolic variable representing the transformation variable. This
variable is often called the “frequency variable”.

Default: The variable w. If F does not contain w, then the default
variable is determined by symvar.

4-303

ifourier

eval_point

Symbolic variable or expression representing the evaluation point. This
variable is often called the “time variable” or the “space variable”.

Default: The variable x. If x is the transformation variable of F,
then the default evaluation point is the variable t.

Definitions Inverse Fourier Transform

The inverse Fourier transform of the expression F = F(w) with respect
to the variable w at the point x is defined as follows:

f x s
c

F w e dwiswx

2
.

Here c and s are parameters of the inverse Fourier transform. The
ifourier function uses c = 1, s = –1.

Examples Compute the inverse Fourier transform of this expression with respect
to the variable y at the evaluation point x:

syms x y
F = sqrt(sym(pi))*exp(-y^2/4);
ifourier(F, y, x)

ans =
exp(-x^2)

Compute the inverse Fourier transform of this expression calling
the ifourier function with one argument. If you do not specify the
transformation variable, ifourier uses the variable w:

syms a w t real
F = exp(-w^2/(4*a^2));
ifourier(F, t)

4-304

ifourier

ans =
exp(-a^2*t^2)/(2*pi^(1/2)*(1/(4*a^2))^(1/2))

If you also do not specify the evaluation point, ifourier uses the
variable x:

ifourier(F)

ans =
exp(-a^2*x^2)/(2*pi^(1/2)*(1/(4*a^2))^(1/2))

Compute the following inverse Fourier transforms that involve the
Dirac and Heaviside functions:

syms t w
ifourier(dirac(w), w, t)

ans =
1/(2*pi)

ifourier(2*exp(-abs(w)) - 1, w, t)

ans =
-(2*pi*dirac(t) - 4/(t^2 + 1))/(2*pi)

ifourier(1/(w^2 + 1), w, t)

ans =
(pi*exp(-t)*heaviside(t) + pi*heaviside(-t)*exp(t))/(2*pi)

If ifourier cannot find an explicit representation of the transform, it
returns results in terms of the direct Fourier transform:

syms F(w) t
f = ifourier(F, w, t)

4-305

ifourier

f(t) =
fourier(F(w), w, -t)/(2*pi)

References Oberhettinger, F. “Tables of Fourier Transforms and Fourier
Transforms of Distributions”, Springer, 1990.

See Also fourier | ilaplace | iztrans | laplace | ztrans

Concepts • “Compute Fourier and Inverse Fourier Transforms” on page 2-94

4-306

ilaplace

Purpose Inverse Laplace transform

Syntax ilaplace(F,trans_var,eval_point)

Description ilaplace(F,trans_var,eval_point) computes the inverse Laplace
transform of F with respect to the transformation variable trans_var
at the point eval_point.

Tips • If you call ilaplace with two arguments, it assumes that the second
argument is the evaluation point eval_point.

• If F is a matrix, ilaplace applies the inverse Laplace transform
to all components of the matrix.

• To compute the direct Laplace transform, use laplace.

Input
Arguments

F

Symbolic expression or function, vector or matrix of symbolic
expressions or functions.

trans_var

Symbolic variable representing the transformation variable. This
variable is often called the “complex frequency variable”.

Default: The variable s. If F does not contain s, then the default
variable is determined by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This
variable is often called the “time variable”.

Default: The variable t. If t is the transformation variable of F,
then the default evaluation point is the variable x.

4-307

ilaplace

Definitions Inverse Laplace Transform

The inverse Laplace transform is defined by a contour integral in the
complex plane:

f t
i

F s e dsst

c i

c i

1

2
.

Here c is a suitable complex number.

Examples Compute the inverse Laplace transform of this expression with respect
to the variable y at the evaluation point x:

syms x y
F = 1/y^2;
ilaplace(F, y, x)

ans =
x

Compute the inverse Laplace transform of this expression calling
the ilaplace function with one argument. If you do not specify the
transformation variable, ilaplace uses the variable s:

syms a s x
F = 1/(s - a)^2;
ilaplace(F, x)

ans =
x*exp(a*x)

If you also do not specify the evaluation point, ilaplace uses the
variable t:

ilaplace(F)

ans =

4-308

ilaplace

t*exp(a*t)

Compute the following inverse Laplace transforms that involve the
Dirac and Heaviside functions:

syms s t
ilaplace(1, s, t)

ans =
dirac(t)

ilaplace(exp(-2*s)/(s^2 + 1) + s/(s^3 + 1), s, t)

ans =
heaviside(t - 2)*sin(t - 2) - exp(-t)/3 +...
(exp(t/2)*(cos((3^(1/2)*t)/2) +
3^(1/2)*sin((3^(1/2)*t)/2)))/3

If ilaplace cannot find an explicit representation of the transform, it
returns an unevaluated call:

syms F(s) t
f = ilaplace(F, s, t)

f(t) =
ilaplace(F(s), s, t)

laplace returns the original expression:

laplace(f, t, s)

ans(s) =
F(s)

See Also fourier | ifourier | iztrans | laplace | ztrans

4-309

ilaplace

Concepts • “Compute Laplace and Inverse Laplace Transforms” on page 2-101

4-310

imag

Purpose Imaginary part of complex number

Syntax imag(z)
imag(A)

Description imag(z) returns the imaginary part of z.

imag(A) returns the imaginary part of each element of A.

Tips • Calling imag for a number that is not a symbolic object invokes the
MATLAB imag function.

Input
Arguments

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Examples Find the imaginary parts of these numbers. Because these numbers are
not symbolic objects, you get floating-point results.

[imag(2 + 3/2*i), imag(sin(5*i)), imag(2*exp(1 + i))]

ans =
1.5000 74.2032 4.5747

Compute the imaginary parts of the numbers converted to symbolic
objects:

[imag(sym(2) + 3/2*i), imag(4/(sym(1) + 3*i)),
imag(sin(sym(5)*i))]

ans =
[3/2, -6/5, sinh(5)]

4-311

imag

Compute the imaginary part of this symbolic expression:

imag(sym('2*exp(1 + i)'))

ans =
2*exp(1)*sin(1)

In general, imag cannot extract the entire imaginary parts from
symbolic expressions containing variables. However, imag can rewrite
and sometimes simplify the input expression:

syms a x y
imag(a + 2)
imag(x + y*i)

ans =
imag(a)

ans =
imag(x) + real(y)

If you assign numeric values to these variables or if you specify that
these variables are real, imag can extract the imaginary part of the
expression:

syms a
a = 5 + 3*i;

imag(a + 2)

ans =
3

syms x y real
imag(x + y*i)

ans =
y

4-312

imag

Clear the assumption that x and y are real:

syms x y clear

Find the imaginary parts of the elements of matrix A:

A = sym('[-1 + i, sinh(x); exp(10 + 7*i), exp(pi*i)]');
imag(A)

ans =
[1, imag(sinh(x))]
[exp(10)*sin(7), 0]

Alternatives You can compute the imaginary part of z via the conjugate: imag(z)=
(z - conj(z))/2i.

See Also conj | real

4-313

int

Purpose Symbolic integration

Syntax int(expr,var)
int(expr,var,Name,Value)
int(expr,var,a,b)
int(expr,var,a,b,Name,Value)

Description int(expr,var) computes the indefinite integral of expr with respect
to the symbolic scalar variable var. Specifying the variable var
is optional. If you do not specify it, int uses the default variable
determined by symvar.

int(expr,var,Name,Value) computes the indefinite integral of expr
with respect to the symbolic scalar variable var with additional options
specified by one or more Name,Value pair arguments. If you do not
specify it, int uses the default variable determined by symvar.

int(expr,var,a,b) computes the definite integral of expr with respect
to var from a to b. If you do not specify it, int uses the default variable
determined by symvar.

int(expr,var,a,b,Name,Value) computes the definite integral of
expr with respect to var from a to b with additional options specified
by one or more Name,Value pair arguments. If you do not specify it,
int uses the default variable determined by symvar.

Tips • In contrast to differentiation, symbolic integration is a more
complicated task. If int cannot compute an integral of an expression,
one of the following reasons might apply:

- The antiderivative does not exist in a closed form.

- The antiderivative exists, but int cannot find it.

If int cannot compute a closed form of an integral, it issues a warning
and returns an unresolved integral.

Try to approximate such integrals by using one of the following
methods:

4-314

int

- For indefinite integrals, use series expansions. Use this method to
approximate an integral around a particular value of the variable.

- For definite integrals, use numeric approximations.

• Results returned by int do not include integration constants.

Input
Arguments

expr

Symbolic expression or matrix of symbolic expressions.

var

Differentiation variable.

Default: Variable determined by symvar.

a

Number or symbolic expression, including expressions with infinities.

b

Number or symbolic expression, including expressions with infinities.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’IgnoreAnalyticConstraints’

If the value is true, apply purely algebraic simplifications to the
integrand. This option can provide simpler results for expressions, for
which the direct use of the integrator returns complicated results. In
some cases, it also enables int to compute integrals that cannot be
computed otherwise. Note that using this option can lead to wrong or
incomplete results.

4-315

int

Default: false

’IgnoreSpecialCases’

If the value is true and integration requires case analysis, ignore cases
that require one or more parameters to be elements of a comparatively
small set, such as a fixed finite set or a set of integers

Default: false

’PrincipalValue’

If the value is true, compute the Cauchy principal value of the integral

Default: false

Examples Find an indefinite integral of the following single-variable expression:

syms x
int(-2*x/(1 + x^2)^2)

The result is:

ans =
1/(x^2 + 1)

Find an indefinite integral of the following multivariate expression
with respect to z:

syms x z
int(x/(1 + z^2), z)

The result is:

ans =
x*atan(z)

4-316

int

Integrate the following expression from 0 to 1:

syms x
int(x*log(1 + x), 0, 1)

The result is:

ans =
1/4

Integrate the following expression from sin(t) to 1:

syms x t
int(2*x, sin(t), 1)

The result is:

ans =
cos(t)^2

Find indefinite integrals for the expressions listed as the elements of a
matrix:

syms x t z
alpha = sym('alpha');
int([exp(t), exp(alpha*t)])

The result is:

ans =
[exp(t), exp(alpha*t)/alpha]

Compute this indefinite integral:

syms x

4-317

int

int(acos(sin(x)), x)

By default, int uses strict mathematical rules. These rules do not let
int rewrite asin(sin(x)) and acos(cos(x)) as x. Therefore, int
returns this result:

ans =
x*acos(sin(x)) + (x^2*sign(cos(x)))/2

If you want a simple practical solution, try
IgnoreAnalyticConstraints:

int(acos(sin(x)), x, 'IgnoreAnalyticConstraints', true)

ans =
(x*(pi - x))/2

Compute this integral with respect to the variable x:

syms x t
int(x^t, x)

By default, int returns the integral as a piecewise object where every
branch corresponds to a particular value (or a range of values) of the
symbolic parameter t:

ans =
piecewise([t == -1, log(x)], [t ~= -1, x^(t + 1)/(t + 1)])

To ignore special cases of parameter values, use IgnoreSpecialCases:

int(x^t, x, 'IgnoreSpecialCases', true)

With this option, int ignores the special case t=-1 and returns only
the branch where t<> 1:

ans =
x^(t + 1)/(t + 1)

4-318

int

Compute this definite integral, where the integrand has a pole in the
interior of the interval of integration:

syms x
int(1/(x - 1), x, 0, 2)

Mathematically, this integral is not defined:

ans =
NaN

However, the Cauchy principal value of the integral exists. Use
PrincipalValue to compute the Cauchy principal value of the integral:

int(1/(x - 1), x, 0, 2, 'PrincipalValue', true)

The result is:

ans =
0

If int cannot compute a closed form of an integral, it issues a warning
and returns an unresolved integral:

syms x
F = sin(sinh(x));
int(F, x)

Warning: Explicit integral could not be found.

ans =
int(sin(sinh(x)), x)

If int cannot compute a closed form of an indefinite integral, try to
approximate the expression around some point using taylor, and then

4-319

int

compute the integral. For example, approximate the expression around
x = 0:

int(taylor(F, x, 'ExpansionPoint', 0, 'Order', 10), x)

ans =
x^10/56700 - x^8/720 - x^6/90 + x^2/2

Compute this definite integral:

syms x
F = int(cos(x)/sqrt(1 + x^2), x, 0, 10)

Warning: Explicit integral could not be found.

F =
int(cos(x)/(x^2 + 1)^(1/2), x == 0..10)

If int cannot compute a closed form of a definite integral, try
approximating that integral numerically using vpa. For example,
approximate F with 5 significant digits:

vpa(F, 5)

ans =
0.37571

Algorithms When you use IgnoreAnalyticConstraints, int applies these rules:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the
following equality is valid for all values of a, b, and c:

(a·b)c = ac·bc.

• log(ab) = b·log(a) for all values of a and b. In particular, the following
equality is valid for all values of a, b, and c:

(ab)c = ab·c.

4-320

int

• If f and g are standard mathematical functions and f(g(x)) = x for
all small positive numbers, f(g(x)) = x is assumed to be valid for all
complex x. In particular:

- log(ex) = x

- asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x

- asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x

- Wk(x·e
x) = x for all values of k

See Also diff | symsum | symvar

How To • “Integration” on page 2-13

4-321

int8

Purpose Convert symbolic matrix to signed integers

Syntax int8(S)
int16(S)
int32(S)
int64(S)

Description int8(S) converts a symbolic matrix S to a matrix of signed 8-bit
integers.

int16(S) converts S to a matrix of signed 16-bit integers.

int32(S) converts S to a matrix of signed 32-bit integers.

int64(S) converts S to a matrix of signed 64-bit integers.

Note The output of int8, int16, int32, and int64 does not have data
type symbolic.

The following table summarizes the output of these four functions.

Function Output Range
Output
Type

Bytes
per
Element

Output
Class

int8 -128 to 127 Signed 8-bit
integer

1 int8

int16 -32,768 to 32,767 Signed 16-bit
integer

2 int16

int32 -2,147,483,648 to 2,147,483,647 Signed 32-bit
integer

4 int32

int64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed 64-bit
integer

8 int64

See Also sym | vpa | single | double | uint8 | uint16 | uint32 | uint64

4-322

inv

Purpose Compute symbolic matrix inverse

Syntax R = inv(A)

Description R = inv(A) returns inverse of the symbolic matrix A.

Examples Compute the inverse of the following matrix of symbolic numbers:

A = sym([2,-1,0;-1,2,-1;0,-1,2]);
inv(A)

The result is:

ans =
[3/4, 1/2, 1/4]
[1/2, 1, 1/2]
[1/4, 1/2, 3/4]

Compute the inverse of the following symbolic matrix:

syms a b c d
A = [a b; c d];
inv(A)

The result is:

ans =
[d/(a*d - b*c), -b/(a*d - b*c)]
[-c/(a*d - b*c), a/(a*d - b*c)]

Compute the inverse of the symbolic Hilbert matrix:

inv(sym(hilb(4)))

The result is:

4-323

inv

ans =
[16, -120, 240, -140]
[-120, 1200, -2700, 1680]
[240, -2700, 6480, -4200]
[-140, 1680, -4200, 2800]

See Also eig | det | rank

4-324

isAlways

Purpose Check whether equation or inequality holds for all values of its variables

Syntax isAlways(cond)
isAlways(cond,Name,Value)

Description isAlways(cond) checks whether the condition cond is valid for all
possible values of symbolic variables in cond. When verifying the
validity of cond, isAlways takes into account all assumptions set on
the variables in cond. If the condition holds, isAlways returns logical 1
(true). Otherwise it returns logical 0 (false).

isAlways(cond,Name,Value) uses additional options specified by one
or more Name,Value pair arguments.

Input
Arguments

cond

Equation, inequality, or vector or matrix of equations or inequalities.
You also can combine several conditions by using the logical operators
and, or, xor, not, or their shortcuts.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Unknown’

One of these strings: false, true, or error. If isAlways cannot
determine whether the specified condition holds for all values of its
variables and at the same time cannot prove that the condition does not
hold, then the function can return logical 0 or 1 or throw an error. By
default, it returns logical 0 (false). If you specify true, then isAlways
will return logical 1 (true) when it cannot decide whether the condition
holds or not. If you specify error, isAlways will throw an error.

Default: false

4-325

isAlways

Examples Check whether this inequality is valid for all values of x:

syms x
isAlways(abs(x) >= 0)

ans =
1

Now check whether this equation is valid for all values of x:

isAlways(sin(x)^2 + cos(x)^2 == 1)

ans =
1

Check if at least one of the following two conditions is valid. To check if
at least one of several conditions is valid, combine these conditions by
using the logical operator or or its shortcut |.

syms x
isAlways(sin(x)^2 + cos(x)^2 == 1 | x^2 > 0)

ans =
1

Check the validity of this inequality. When isAlways cannot determine
whether the condition is valid, it returns logical 0 by default:

syms x
isAlways(2*x >= x)

ans =
0

4-326

isAlways

To change this default behavior, use Unknown. For example, specify
that isAlways must return logical 1 if it cannot determine the validity
of this inequality:

isAlways(2*x >= x,'Unknown','true')

ans =
1

Instead of true, you can also specify error. In this case, isAlways will
throw an error if it cannot determine the validity of the condition.

Check validity of this inequality under the assumption that x is positive.
When isAlways determines validity of an equation or inequality,
it takes into account assumptions on variables in that equation or
inequality:

syms x
assume(x < 0)
isAlways(2*x < x)

ans =
1

For further computations, clear the assumption on x:

syms x clear

See Also assume | assumeAlso | assumptions | isequaln | logical |
sym | syms

Concepts • “Assumptions on Symbolic Objects” on page 1-35
• “Clear Assumptions and Reset the Symbolic Engine” on page 3-43

4-327

isequaln

Purpose Test symbolic objects for equality, treating NaN values as equal

Syntax isequaln(A,B)
isequaln(A1,A2,...,An)

Description isequaln(A,B) returns logical 1 (true) if A and B are the same size and
their contents are of equal value. Otherwise, isequaln returns logical 0
(false). All NaN (not a number) values are considered to be equal to each
other. isequaln recursively compares the contents of symbolic data
structures and the properties of objects. If all contents in the respective
locations are equal, isequaln returns logical 1 (true).

isequaln(A1,A2,...,An) returns logical 1 (true) if all the inputs are
equal.

Tips • Calling isequaln for arguments that are not symbolic objects invokes
the MATLAB isequaln function. If one of the arguments is symbolic,
then all other arguments are converted to symbolic objects before
comparison.

Input
Arguments

A,B - Inputs to compare
symbolic numbers | symbolic variables | symbolic expressions |
symbolic functions | symbolic vectors | symbolic matrices

Inputs to compare, specified as symbolic numbers, variables,
expressions, functions, vectors, or matrices. If one of the arguments is a
symbolic object and the other one is numeric, the toolbox converts the
numeric object to symbolic before comparing them.

A1,A2,...,An - Series of inputs to compare
symbolic numbers | symbolic variables | symbolic expressions |
symbolic functions | symbolic vectors | symbolic matrices

Series of inputs to compare, specified as symbolic numbers, variables,
expressions, functions, vectors, or matrices. If at least one of the
arguments is a symbolic object, the toolbox converts all other arguments
to symbolic objects before comparing them.

4-328

isequaln

Examples Compare Two Expressions

Use isequaln to compare these two expressions:

syms x
isequaln(abs(x), x)

ans =
0

For positive x, these expressions are identical:

assume(x > 0)
isequaln(abs(x), x)

ans =
1

For further computations, remove the assumption:

syms x clear

Compare Two Matrices

Use isequaln to compare these two matrices:

A = hilb(3);
B = sym(A);
isequaln(A, B)

ans =
1

Compare Vectors Containing NaN Values

Use isequaln to compare these vectors:

syms x
A1 = [x NaN NaN];
A2 = [x NaN NaN];
A3 = [x NaN NaN];
isequaln(A1, A2, A3)

4-329

isequaln

ans =
1

See Also isAlways | isequaln | logical

4-330

iztrans

Purpose Inverse Z-transform

Syntax iztrans(F,trans_index,eval_point)

Description iztrans(F,trans_index,eval_point) computes the inverse
Z-transform of F with respect to the transformation index trans_index
at the point eval_point.

Tips • If you call iztrans with two arguments, it assumes that the second
argument is the evaluation point eval_point.

• If F is a matrix, iztrans applies the Z-transform to all components
of the matrix.

• To compute the direct Z-transform, use ztrans.

Input
Arguments

F

Symbolic expression, symbolic function, or vector or matrix of symbolic
expressions or functions.

trans_index

Symbolic variable representing the transformation index. This variable
is often called the “complex frequency variable”.

Default: The variable z. If F does not contain z, then the default
variable is determined by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This
variable is often called the “discrete time variable”.

Default: The variable n. If n is the transformation index of F,
then the default evaluation point is the variable k.

4-331

iztrans

Definitions Inverse Z-Transform

If R is a positive number, such that the function F(z) is analytic on
and outside the circle |z| = R, then the inverse Z-transform is defined
as follows:

f n
i

F z z dz nn

z R

1
2

0 1 21

, , , ...

Examples Compute the inverse Z-transform of this expression with respect to the
transformation index x at the evaluation point k:

syms k x
F = 2*x/(x - 2)^2;
iztrans(F, x, k)

ans =
2^k + 2^k*(k - 1)

Compute the inverse Z-transform of this expression calling the iztrans
function with one argument. If you do not specify the transformation
index, iztrans uses the variable z:

syms z a k
F = exp(a/z);
iztrans(F, k)

ans =
a^k/factorial(k)

If you also do not specify the evaluation point, iztrans uses the
variable n:

iztrans(F)

ans =

4-332

iztrans

a^n/factorial(n)

Compute the inverse Z-transforms of these expressions. The results
involve the Kronecker’s delta function:

syms n z
iztrans(1/z, z, n)

ans =
kroneckerDelta(n - 1, 0)

iztrans((z^3 + 3*z^2 + 6*z + 5)/z^5, z, n)

ans =
kroneckerDelta(n - 2, 0) + 3*kroneckerDelta(n - 3, 0) +...
6*kroneckerDelta(n - 4, 0) + 5*kroneckerDelta(n - 5, 0)

If iztrans cannot find an explicit representation of the transform, it
returns an unevaluated call:

syms F(z) n
f = iztrans(F, z, n)

f(n) =
iztrans(F(z), z, n)

ztrans returns the original expression:

ztrans(f, n, z)

ans(z) =
F(z)

See Also fourier | ifourier | ilaplace | laplace | ztrans

4-333

iztrans

Concepts • “Compute Z-Transforms and Inverse Z-Transforms” on page 2-108

4-334

jacobian

Purpose Jacobian matrix

Syntax jacobian(f,v)

Description jacobian(f,v) computes the Jacobian matrix of the scalar or vector f

with respect to v. The (i, j)-th entry of the result is ∂ ∂f i v j() / () . If f
is a scalar, the Jacobian matrix of f is the gradient of f. If v is a scalar,
the result equals to diff(f, v).

Examples Compute the Jacobian matrix for each of these vectors:

syms x y z
f = [x*y*z; y; x + z];
v = [x, y, z];
R = jacobian(f, v)
b = jacobian(x + z, v)

R =
[y*z, x*z, x*y]
[0, 1, 0]
[1, 0, 1]

b =
[1, 0, 1]

See Also curl | divergence | diff | gradient | hessian | laplacian |
potential | vectorPotential

4-335

jordan

Purpose Jordan form of matrix

Syntax J = jordan(A)
[V,J] = jordan(A)

Description J = jordan(A) computes the Jordan canonical form (also called Jordan
normal form) of a symbolic or numeric matrix A. The Jordan form of a
numeric matrix is extremely sensitive to numerical errors. To compute
Jordan form of a matrix, represent the elements of the matrix by
integers or ratios of small integers, if possible.

[V,J] = jordan(A) computes the Jordan form J and the similarity
transform V. The matrix V contains the generalized eigenvectors of A as
columns, and V\A*V = J.

Examples Compute the Jordan form and the similarity transform for this numeric
matrix. Verify that the resulting matrix V satisfies the condition V\A*V
= J:

A = [1 -3 -2; -1 1 -1; 2 4 5]
[V, J] = jordan(A)
V\A*V

The result is:

A =
1 -3 -2

-1 1 -1
2 4 5

V =
-1 1 -1
-1 0 0
2 0 1

J =
2 1 0
0 2 0

4-336

jordan

0 0 3

ans =
2 1 0
0 2 0
0 0 3

See Also charpoly | eig | inv

4-337

lambertw

Purpose Lambert W function

Syntax W = lambertw(X)
W = lambertw(K,X)

Description W = lambertw(X) evaluates the Lambert W function at the elements
of X, a numeric matrix or a symbolic matrix. The Lambert W function
solves the equation

wew = x

for w as a function of x.

W = lambertw(K,X) is the K-th branch of this multi-valued function.

Examples Compute the Lambert W function:

lambertw([0 exp(2); pi 1])

The result is:

ans =
0 1.5571

1.0737 0.5671

The statements

syms x y
lambertw([0 x; 1 y])

return

ans =
[0, lambertw(0, x)]
[lambertw(0, 1), lambertw(0, y)]

4-338

lambertw

References [1] Corless, R.M, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey, Lambert’s
W Function in Maple™, Technical Report, Dept. of Applied Math., Univ.
of Western Ontario, London, Ontario, Canada.

[2] Corless, R.M, Gonnet, G.H. Gonnet, D.E.G. Hare, and D.J. Jeffrey,
On Lambert’s W Function, Technical Report, Dept. of Applied Math.,
Univ. of Western Ontario, London, Ontario, Canada.

Both papers are available by anonymous FTP from

cs-archive.uwaterloo.ca

4-339

laplace

Purpose Laplace transform

Syntax laplace(f,trans_var,eval_point)

Description laplace(f,trans_var,eval_point) computes the Laplace transform
of f with respect to the transformation variable trans_var at the
point eval_point.

Tips • If you call laplace with two arguments, it assumes that the second
argument is the evaluation point eval_point.

• If f is a matrix, laplace applies the Laplace transform to all
components of the matrix.

• To compute the inverse Laplace transform, use ilaplace.

Input
Arguments

f

Symbolic expression, symbolic function, or vector or matrix of symbolic
expressions or functions.

trans_var

Symbolic variable representing the transformation variable. This
variable is often called the “time variable”.

Default: The variable t. If f does not contain t, then the default
variable is determined by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This
variable is often called the “complex frequency variable”.

Default: The variable s. If s is the transformation variable of f,
then the default evaluation point is the variable z.

4-340

laplace

Definitions Laplace Transform

The Laplace transform is defined as follows:

F s f t e dtst

0

.

Examples Compute the Laplace transform of this expression with respect to the
variable x at the evaluation point y:

syms x y
f = 1/sqrt(x);
laplace(f, x, y)

ans =
pi^(1/2)/y^(1/2)

Compute the Laplace transform of this expression calling the laplace
function with one argument. If you do not specify the transformation
variable, laplace uses the variable t:

syms a t y
f = exp(-a*t);
laplace(f, y)

ans =
1/(a + y)

If you also do not specify the evaluation point, laplace uses the
variable s:

laplace(f)

ans =
1/(a + s)

4-341

laplace

Compute the following Laplace transforms that involve the Dirac and
Heaviside functions:

syms t s
laplace(dirac(t - 3), t, s)

ans =
exp(-3*s)

laplace(heaviside(t - pi), t, s)

ans =
exp(-pi*s)/s

If laplace cannot find an explicit representation of the transform, it
returns an unevaluated call:

syms f(t) s
F = laplace(f, t, s)

F(s) =
laplace(f(t), t, s)

ilaplace returns the original expression:

ilaplace(F, s, t)

ans(t) =
f(t)

The Laplace transform of a function is related to the Laplace transform
of its derivative:

syms f(t) s
laplace(diff(f(t), t), t, s)

4-342

laplace

ans =
s*laplace(f(t), t, s) - f(0)

See Also fourier | ifourier | ilaplace | iztrans | ztrans

Concepts • “Compute Laplace and Inverse Laplace Transforms” on page 2-101

4-343

laplacian

Purpose Laplacian of scalar function

Syntax laplacian(f,x)
laplacian(f)

Description laplacian(f,x) computes the Laplacian of the scalar function or
functional expression f with respect to the vector x in Cartesian
coordinates.

laplacian(f) computes the gradient vector of the scalar function or
functional expression f with respect to a vector constructed from all
symbolic variables found in f. The order of variables in this vector is
defined by symvar.

Tips • If x is a scalar, gradient(f, x) = diff(f, 2, x).

Input
Arguments

f

Symbolic expression or symbolic function.

x

Vector with respect to which you compute the Laplacian.

Default: Vector constructed from all symbolic variables found in
f. The order of variables in this vector is defined by symvar.

Definitions Laplacian of a Scalar Function

The Laplacian of the scalar function or functional expression f with
respect to the vector X = (X1,...,Xn) is the sum of the second derivatives
of f with respect to X1,...,Xn:

f

f

x
i

ii

n 2

2
1

4-344

laplacian

Examples Compute the Laplacian of this symbolic expression. By default,
laplacian computes the Laplacian of an expression with respect to a
vector of all variables found in that expression. The order of variables is
defined by symvar.

syms x y t
laplacian(1/x^3 + y^2 - log(t))

ans =
1/t^2 + 12/x^5 + 2

Create this symbolic function:

syms x y z
f(x, y, z) = 1/x + y^2 + z^3;

Compute the Laplacian of this function with respect to the vector [x,
y, z]:

L = laplacian(f, [x y z])

L(x, y, z) =
6*z + 2/x^3 + 2

Alternatives The Laplacian of a scalar function or functional expression is the
divergence of the gradient of that function or expression:

 f f

Therefore, you can compute the Laplacian using the divergence and
gradient functions:

syms f(x, y)
divergence(gradient(f(x, y)), [x y])

See Also curl | diff | divergence | gradient | hessian | jacobian |
potential | vectorPotential

4-345

latex

Purpose LaTeX representation of symbolic expression

Syntax latex(S)

Description latex(S) returns the LaTeX representation of the symbolic expression
S.

Examples The statements

syms x
f = taylor(log(1+x));
latex(f)

return

ans =

\frac{x^5}{5} - \frac{x^4}{4} + \frac{x^3}{3} - \frac{x^2}{2} + x

The statements

H = sym(hilb(3));
latex(H)

return

ans =
\left(\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3}\\...
\frac{1}{2} & \frac{1}{3} & \frac{1}{4}\\...
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{array}\right)

The statements

syms t;
alpha = sym('alpha');
A = [alpha t alpha*t];
latex(A)

4-346

latex

return

ans =

\left(\begin{array}{ccc} \mathrm{alpha} & t & \mathrm{alpha}\, t...

\end{array}\right)

You can use the latex command to annotate graphs:

syms x
f = taylor(log(1+x));
ezplot(f)
hold on
title(['$' latex(f) '$'],'interpreter','latex')
hold off

See Also pretty | ccode | fortran

4-347

le

Purpose Define less than or equal to relation

Syntax A <= B
le(A,B)

Description A <= B creates a less than or equal to relation.

le(A,B) is equivalent to A <= B.

Tips • If A and B are both numbers, then A <= B compares A and B and
returns logical 1 (true) or logical 0 (false). Otherwise, A <= B
returns a symbolic less than or equal to relation. You can use that
relation as an argument for such functions as assume, assumeAlso,
and subs.

• If both A and B are arrays, then these arrays must have
the same dimensions. A <= B returns an array of relations
A(i,j,...)<=B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is
expanded into an array of the same dimensions as the other array.
In other words, if A is a variable (for example, x), and B is an m-by-n
matrix, then A is expanded into m-by-n matrix of elements, each
set to x.

• The field of complex numbers is not an ordered field. MATLAB
projects complex numbers in relations to a real axis. For example, x
<= i becomes x <= 0, and x <= 3 + 2*i becomes x <= 3.

Input
Arguments

A

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

B

4-348

le

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

Examples Use assume and the relational operator <= to set the assumption that x
is less than or equal to 3:

syms x
assume(x <= 3)

Solve this equation. The solver takes into account the assumption on
variable x, and therefore returns these three solutions.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =
1
2
3

Use the relational operator <= to set this condition on variable x:

syms x
cond = (abs(sin(x)) <= 1/2);

for i = 0:sym(pi/12):sym(pi)
if subs(cond, x, i)

disp(i)
end

end

Use the for loop with step π/24 to find angles from 0 to π that satisfy
that condition:

0
pi/12
pi/6

4-349

le

(5*pi)/6
(11*pi)/12
pi

Alternatives You can also define this relation by combining an equation and a less
than relation. Thus, A <= B is equivalent to (A < B) & (A == B).

See Also eq | ge | gt | isAlways | lt | logical | ne

Concepts • “Set Assumptions” on page 1-35

4-350

limit

Purpose Compute limit of symbolic expression

Syntax limit(expr,x,a)
limit(expr,a)
limit(expr)
limit(expr,x,a,'left')
limit(expr,x,a,'right')

Description limit(expr,x,a) computes bidirectional limit of the symbolic
expression expr when x approaches a.

limit(expr,a) computes bidirectional limit of the symbolic expression
expr when the default variable approaches a.

limit(expr) computes bidirectional limit of the symbolic expression
expr when the default variable approaches 0.

limit(expr,x,a,'left') computes the limit of the symbolic expression
expr when x approaches a from the left.

limit(expr,x,a,'right') computes the limit of the symbolic
expression expr when x approaches a from the right.

Examples Compute bidirectional limits for the following expressions:

syms x h
limit(sin(x)/x)
limit((sin(x + h) - sin(x))/h, h, 0)

ans =
1

ans =
cos(x)

Compute the limits from the left and right for the following expressions:

syms x

4-351

limit

limit(1/x, x, 0, 'right')
limit(1/x, x, 0, 'left')

ans =
Inf

ans =
-Inf

Compute the limit for the functions presented as elements of a vector:

syms x a
v = [(1 + a/x)^x, exp(-x)];
limit(v, x, inf)

ans =
[exp(a), 0]

See Also diff | taylor

4-352

linsolve

Purpose Solve linear system of equations given in matrix form

Syntax X = linsolve(A,B)
[X,R] = linsolve(A,B)

Description X = linsolve(A,B) solves the matrix equation AX = B. In particular,
if B is a column vector, linsolve solves a linear system of equations
given in the matrix form.

[X,R] = linsolve(A,B) solves the matrix equation AX = B and
returns the reciprocal of the condition number of A if A is a square
matrix, and the rank of A otherwise.

Tips • If the solution is not unique, linsolve issues a warning, chooses
one solution and returns it.

• If the system does not have a solution, linsolve issues a warning
and returns X with all elements set to Inf.

• Calling linsolve for numeric matrices that are not symbolic objects
invokes the MATLAB linsolve function. This function accepts real
arguments only. If your system of equations uses complex numbers,
use sym to convert at least one matrix to a symbolic matrix, and then
call linsolve.

Input
Arguments

A

Coefficient matrix.

B

Matrix or column vector containing the right sides of equations.

Output
Arguments

X

Matrix or vector representing the solution.

R

4-353

linsolve

Reciprocal of the condition number of A if A is a square matrix.
Otherwise, the rank of A.

Definitions Matrix Representation of a System of Linear Equations

A system of linear equations

a x a x a x b

a x a x a x b

a x a x

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

 a x bmn n m

can be represented as the matrix equation A x b

, where A is the
coefficient matrix:

A
a a

a a

n

m mn

11 1

1

and b

is the vector containing the right sides of equations:

b
b

bm

1

Examples Define the matrix equation using the following matrices A and B:

syms x y z;
A = [x 2*x y; x*z 2*x*z y*z+z; 1 0 1];
B = [z y; z^2 y*z; 0 0];

Use linsolve to solve this equation. Assigning the result of the
linsolve call to a single output argument, you get the matrix of
solutions:

4-354

linsolve

X = linsolve(A, B)

X =
[0, 0]
[z/(2*x), y/(2*x)]
[0, 0]

To return the solution and the reciprocal of the condition number of the
square coefficient matrix, assign the result of the linsolve call to a
vector of two output arguments:

syms a x y z;
A = [a 0 0; 0 a 0; 0 0 1];
B = [x; y; z];
[X, R] = linsolve(A, B)

X =
x/a
y/a

z

R =
1/(max(abs(a), 1)*max(1/abs(a), 1))

If the coefficient matrix is rectangular, linsolve returns the rank of
the coefficient matrix as the second output argument:

syms a b x y;
A = [a 0 1; 1 b 0];
B = [x; y];
[X, R] = linsolve(A, B)

Warning: System is rank deficient. Solution is not unique.

X =

4-355

linsolve

x/a
-(x - a*y)/(a*b)

0

R =
2

See Also cond | equationsToMatrix | inv | norm | odeToVectorField |
rank | solve | symvar

Related
Examples

• “Solve a System of Algebraic Equations” on page 2-85

4-356

log

Purpose Natural logarithm of entries of symbolic matrix

Syntax Y = log(X)

Description Y = log(X) returns the natural logarithm of X.

Input
Arguments

X

Symbolic variable, expression, function, or matrix

Output
Arguments

Y

Number, variable, expression, function, or matrix. If X is a matrix, Y is
a matrix of the same size, each entry of which is the logarithm of the
corresponding entry of X.

Examples Compute the natural logarithm of each entry of this symbolic matrix:

syms x
M = x*hilb(2);
log(M)

ans =
[log(x), log(x/2)]
[log(x/2), log(x/3)]

Differentiate this symbolic expression:

syms x
diff(log(x^3), x)

ans =
3/x

See Also log2 | log10

4-357

log10

Purpose Logarithm base 10 of entries of symbolic matrix

Syntax Y = log10(X)

Description Y = log10(X) returns the logarithm to the base 10 of X. If X is a matrix,
Y is a matrix of the same size, each entry of which is the logarithm of
the corresponding entry of X.

See Also log | log2

4-358

log2

Purpose Logarithm base 2 of entries of symbolic matrix

Syntax Y = log2(X)

Description Y = log2(X) returns the logarithm to the base 2 of X. If X is a matrix, Y
is a matrix of the same size, each entry of which is the logarithm of the
corresponding entry of X.

See Also log | log10

4-359

logical

Purpose Check validity of equation or inequality

Syntax logical(cond)

Description logical(cond) checks whether the condition cond is valid.

Tips • For symbolic equations, logical returns logical 1 (true) only if the
left and right sides are identical. Otherwise, it returns logical 0
(false).

• For symbolic inequalities constructed with ~=, logical returns
logical 0 (false) only if the left and right sides are identical.
Otherwise, it returns logical 1 (true).

• For all other inequalities (constructed with <, <=, >, or >=), logical
returns logical 1 if it can prove that the inequality is valid and logical
0 if it can prove that the inequality is invalid. If logical cannot
determine whether such inequality is valid or not, it throws an error.

• logical evaluates expressions on both sides of an equation or
inequality, but does not simplify or mathematically transform them.
To compare two expressions applying mathematical transformations
and simplifications, use isAlways.

• logical typically ignores assumptions on variables.

Input
Arguments

cond

Equation, inequality, or vector or matrix of equations or inequalities.
You also can combine several conditions by using the logical operators
and, or, xor, not, or their shortcuts.

Examples Use logical to check whether 1 if less than 2:

logical(1 < 2)

ans =
1

4-360

logical

Check if the following two conditions are both valid. To check if several
conditions are valid at the same time, combine these conditions by using
the logical operator and or its shortcut &.

syms x
logical(1 < 2 & x == x)

ans =
1

Check this inequality. Note that logical evaluates the left side of the
inequality.

logical(4 - 1 > 2)

ans =
1

logical also evaluates more complicated symbolic expressions on both
sides of equations and inequalities. For example, it evaluates the
integral on the left side of this equation:

syms x
logical(int(x, x, 0, 2) - 1 == 1)

ans =
1

Check the validity of this equation using logical. Without an
additional assumption that x is nonnegative, this equation is invalid.

syms x
logical(x == sqrt(x^2))

ans =

4-361

logical

0

Use assume to set an assumption that x is nonnegative. Now the
expression sqrt(x^2) evaluates to x, and logical returns 1:

assume(x >= 0)
logical(x == sqrt(x^2))

ans =
1

Note that logical typically ignores assumptions on variables:

syms x
assume(x == 5)
logical(x == 5)

ans =
0

To compare expressions taking into account assumptions on their
variables, use isAlways:

isAlways(x == 5)

ans =
1

For further computations, clear the assumption on x:

syms x clear

Do not use logical to check equations and inequalities that require
simplification or mathematical transformations. For such equations
and inequalities, logical might return unexpected results. For
example, logical does not recognize mathematical equivalence of these
expressions:

4-362

logical

syms x
logical(sin(x)/cos(x) == tan(x))

ans =
0

logical also does not realize that this inequality is invalid:

logical(sin(x)/cos(x) ~= tan(x))

ans =
1

To test the validity of equations and inequalities that require
simplification or mathematical transformations, use isAlways:

isAlways(sin(x)/cos(x) == tan(x))

ans =
1

isAlways(sin(x)/cos(x) ~= tan(x))

ans =
0

See Also assume | assumeAlso | assumptions | isAlways | isequaln |
sym | syms

Concepts • “Assumptions on Symbolic Objects” on page 1-35
• “Clear Assumptions and Reset the Symbolic Engine” on page 3-43

4-363

lt

Purpose Define less than relation

Syntax A < B
lt(A,B)

Description A < B creates a less than relation.

lt(A,B) is equivalent to A < B.

Tips • If A and B are both numbers, then A < B compares A and B and
returns logical 1 (true) or logical 0 (false). Otherwise, A < B
returns a symbolic less than relation. You can use that relation as an
argument for such functions as assume, assumeAlso, and subs.

• If both A and B are arrays, then these arrays must have
the same dimensions. A < B returns an array of relations
A(i,j,...)<B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is
expanded into an array of the same dimensions as the other array.
In other words, if A is a variable (for example, x), and B is an m-by-n
matrix, then A is expanded into m-by-n matrix of elements, each
set to x.

• The field of complex numbers is not an ordered field. MATLAB
projects complex numbers in relations to a real axis. For example, x
< i becomes x < 0, and x < 3 + 2*i becomes x < 3.

Input
Arguments

A

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

4-364

lt

Examples Use assume and the relational operator < to set the assumption that
x is less than 3:

syms x
assume(x < 3)

Solve this equation. The solver takes into account the assumption on
variable x, and therefore returns these two solutions.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =
1
2

Use the relational operator < to set this condition on variable x:

syms x
cond = abs(sin(x)) + abs(cos(x)) < 6/5;

Use the for loop with step π/24 to find angles from 0 to π that satisfy
that condition:

for i = 0:sym(pi/24):sym(pi)
if subs(cond, x, i)

disp(i)
end

end

0
pi/24
(11*pi)/24
pi/2
(13*pi)/24
(23*pi)/24
pi

4-365

lt

See Also eq | ge | gt | isAlways | le | logical | ne

Concepts • “Set Assumptions” on page 1-35

4-366

lu

Purpose LU factorization

Syntax [L,U] = lu(A)
[L,U,P] = lu(A)
[L,U,p] = lu(A,'vector')
[L,U,p,q] = lu(A,'vector')
[L,U,P,Q,R] = lu(A)
[L,U,p,q,R] = lu(A,'vector')
lu(A)

Description [L,U] = lu(A) returns an upper triangular matrix U and a matrix L,
such that A = L*U. Here, L is a product of the inverse of the permutation
matrix and a lower triangular matrix.

[L,U,P] = lu(A) returns an upper triangular matrix U, a lower
triangular matrix L, and a permutation matrix P, such that P*A = L*U.

[L,U,p] = lu(A,'vector') returns the permutation information as a
vector p, such that A(p,:) = L*U.

[L,U,p,q] = lu(A,'vector') returns the permutation information as
two row vectors p and q, such that A(p,q) = L*U.

[L,U,P,Q,R] = lu(A) returns an upper triangular matrix U, a lower
triangular matrix L, permutation matrices P and Q, and a scaling
matrix R, such that P*(R\A)*Q = L*U.

[L,U,p,q,R] = lu(A,'vector') returns the permutation information
in two row vectors p and q, such that R(:,p)\A(:,q) = L*U.

lu(A) returns the matrix that contains the strictly lower triangular
matrix L (the matrix without its unit diagonal) and the upper triangular
matrix U as submatrices. Thus, lu(A) returns the matrix U + L -
eye(size(A)), where L and U are defined as [L,U,P] = lu(A). The
matrix A must be square.

Tips • Calling lu for numeric arguments that are not symbolic objects
invokes the MATLAB lu function.

4-367

lu

• The thresh option supported by the MATLAB lu function does not
affect symbolic inputs.

• If you use 'matrix' instead of 'vector', then lu returns
permutation matrices, as it does by default.

• L and U are nonsingular if and only if A is nonsingular. lu also can
compute the LU factorization of a singular matrix A. In this case, L
or U is a singular matrix.

• Most algorithms for computing LU factorization are variants of
Gaussian elimination.

Input
Arguments

A

Square or rectangular symbolic matrix.

’vector’

Flag that prompts lu to return the permutation information in row
vectors.

Output
Arguments

L

Lower triangular matrix or a product of the inverse of the permutation
matrix and a lower triangular matrix.

U

Upper triangular matrix.

P

Permutation matrix.

p

Row vector.

q

Row vector.

4-368

lu

Q

Permutation matrix.

R

Diagonal scaling matrix.

Definitions LU Factorization of a Matrix

LU factorization expresses an m-by-n matrix A as P*A = L*U. Here, L is
an m-by-m lower triangular matrix, U is an m-by-n upper triangular
matrix, and P is a permutation matrix.

Permutation Vector

Permutation vector p contains numbers corresponding to row exchanges
in the matrix A. For an m-by-m matrix, p represents the following
permutation matrix with indices i and j ranging from 1 to m:

P
j p
j pij p j

i

i
i

 ,
1
0

 if
 if

Examples Compute the LU factorization of this matrix. Because these numbers
are not symbolic objects, you get floating-point results.

[L, U] = lu([2 -3 -1; 1/2 1 -1; 0 1 -1])

L =
1.0000 0 0
0.2500 1.0000 0

0 0.5714 1.0000

U =
2.0000 -3.0000 -1.0000

0 1.7500 -0.7500
0 0 -0.5714

4-369

lu

Now convert this matrix to a symbolic object, and compute the LU
factorization:

[L, U] = lu(sym([2 -3 -1; 1/2 1 -1; 0 1 -1]))

L =
[1, 0, 0]
[1/4, 1, 0]
[0, 4/7, 1]

U =
[2, -3, -1]
[0, 7/4, -3/4]
[0, 0, -4/7]

Compute the LU factorization returning the lower and upper triangular
matrices and the permutation matrix:

syms a;
[L, U, P] = lu(sym([0 0 a; a 2 3; 0 a 2]))

L =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

U =
[a, 2, 3]
[0, a, 2]
[0, 0, a]

P =
[0, 1, 0]
[0, 0, 1]
[1, 0, 0]

4-370

lu

Use the 'vector' flag to return the permutation information as a
vector:

syms a;
A = [0 0 a; a 2 3; 0 a 2];
[L, U, p] = lu(A, 'vector')

L =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

U =
[a, 2, 3]
[0, a, 2]
[0, 0, a]

p =
[2, 3, 1]

Use isAlways to check that A(p,:) = L*U:

isAlways(A(p,:) == L*U)

ans =
1 1 1
1 1 1
1 1 1

Restore the permutation matrix P from the vector p:

P = zeros(3, 3);
for i = 1:3

P(i, p(i)) = 1;
end;
P

P =

4-371

lu

0 1 0
0 0 1
1 0 0

Compute the LU factorization of this matrix returning the permutation
information in the form of two vectors p and q:

syms a
A = [a, 2, 3*a; 2*a, 3, 4*a; 4*a, 5, 6*a];
[L, U, p, q] = lu(A, 'vector')

L =
[1, 0, 0]
[2, 1, 0]
[4, 3, 1]

U =
[a, 2, 3*a]
[0, -1, -2*a]
[0, 0, 0]

p =
[1, 2, 3]

q =
[1, 2, 3]

Use isAlways to check that A(p, q) = L*U:

isAlways(A(p, q) == L*U)

ans =
1 1 1
1 1 1
1 1 1

4-372

lu

Compute the LU factorization of this matrix returning the lower and
upper triangular matrices, permutation matrices, and the scaling
matrix:

syms a;
A = [0, a; 1/a, 0; 0, 1/5; 0,-1];
[L, U, P, Q, R] = lu(A)

L =
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 1/(5*a), 1, 0]
[0, -1/a, 0, 1]

U =
[1/a, 0]
[0, a]
[0, 0]
[0, 0]

P =
[0, 1, 0, 0]
[1, 0, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

Q =
[1, 0]
[0, 1]

R =
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

Use isAlways to check that P*(R\A)*Q = L*U:

4-373

lu

isAlways(P*(R\A)*Q == L*U)

ans =
1 1
1 1
1 1
1 1

Compute the LU factorization of this matrix using the 'vector' flag to
return the permutation information as vectors p and q. Also compute
the scaling matrix R:

syms a;
A = [0, a; 1/a, 0; 0, 1/5; 0,-1];
[L, U, p, q, R] = lu(A, 'vector')

L =
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 1/(5*a), 1, 0]
[0, -1/a, 0, 1]

U =
[1/a, 0]
[0, a]
[0, 0]
[0, 0]

p =
[2, 1, 3, 4]

q =
[1, 2]

R =
[1, 0, 0, 0]

4-374

lu

[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

Use isAlways to check that R(:,p)\A(:,q) = L*U:

isAlways(R(:,p)\A(:,q) == L*U)

ans =
1 1
1 1
1 1
1 1

Call the lu function for this matrix:

syms a;
A = [0 0 a; a 2 3; 0 a 2];
lu(A)

ans =
[a, 2, 3]
[0, a, 2]
[0, 0, a]

Verify that the resulting matrix is equal to U + L - eye(size(A)),
where L and U are defined as [L,U,P] = lu(A):

[L,U,P] = lu(A);
U + L - eye(size(A))

ans =
[a, 2, 3]
[0, a, 2]
[0, 0, a]

See Also chol | eig | isAlwayslinalg::factorLU | lu | svd | vpa

4-375

matlabFunction

Purpose Convert symbolic expression to function handle or file

Syntax g = matlabFunction(f)
g = matlabFunction(f1,...,fN)
g = matlabFunction(f,Name,Value)
g = matlabFunction(f1,...,fN,Name,Value)

Description g = matlabFunction(f) converts the symbolic expression or function f
to a MATLAB function with the handle g.

g = matlabFunction(f1,...,fN) converts a vector of the symbolic
expressions or functions f1,...,fN to a MATLAB function with
multiple outputs. The function handle is g.

g = matlabFunction(f,Name,Value) converts the symbolic expression
or function f to a MATLAB function using additional options specified
by one or more Name,Value pair arguments.

g = matlabFunction(f1,...,fN,Name,Value) converts a vector of the
symbolic expressions or functions f1,...,fN to a MATLAB function
with multiple outputs using additional options specified by one or more
Name,Value pair arguments.

Tips • To convert a MuPAD expression or function to a MATLAB
function, use f = evalin(symengine,'MuPAD_Expression')
or f = feval(symengine,'MuPAD_Function',x1,...,xn).
matlabFunction cannot correctly convert some MuPAD expressions
to MATLAB functions. These expressions do not trigger an error
message. When converting a MuPAD expression or function that
is not on the MATLAB vs. MuPAD Expressions list, always check
the conversion results. To verify the results, execute the resulting
function.

• When you use the file argument, use rehash to make the generated
function available immediately. rehash updates the MATLAB list of
known files for directories on the search path.

4-376

matlabFunction

Input
Arguments

f

Symbolic expression or function.

f1,...,fN

Vector of symbolic expressions or functions.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’file’

Generate a file with optimized code. The generated file can accept
double or matrix arguments and evaluate the symbolic expression
applied to the arguments. Optimized means intermediate variables are
automatically generated to simplify or speed up the code. MATLAB
generates intermediate variables as a lowercase letter t followed by an
automatically generated number, for example t32. The value of this
parameter must be a string representing the path to the file.

Default: If the value string is empty, matlabFunction generates
an anonymous function. If the string does not end in .m, the
function appends .m.

’outputs’

Specify the names of output variables. The value must be a cell array of
strings.

Default: The names of output variables coincide with the names
you use calling matlabFunction. If you call matlabFunction
using an expression instead of individual variables, the default
names of output variables consist of the word out followed by
a number, for example, out3.

4-377

matlabFunction

’vars’

Specify the order of the input variables or symbolic vectors in the
resulting function handle or the file. The value of this parameter
must be either a cell array of strings or symbolic arrays, or a vector of
symbolic variables. The number of value entries must equal or exceed
the number of free variables in f.

Default: When converting symbolic expressions, the order is
alphabetical. When converting symbolic functions, the input
arguments appear in front of other variables. Other variables
are sorted alphabetically.

Output
Arguments

g

MATLAB function handle.

Examples Convert this symbolic expression to a MATLAB function with the
handle ht:

syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(sin(r)/r)

ht =
@(x,y)sin(sqrt(x.^2+y.^2)).*1.0./sqrt(x.^2+y.^2)

Create this symbolic function:

syms x y
f(x, y) = x^3 + y^3;

Convert f to a MATLAB function:

ht = matlabFunction(f)

ht =

4-378

matlabFunction

@(x,y)x.^3+y.^3

Convert this expression to a MATLAB function generating the file
myfile that contains the function:

syms x y z
r = x^2 + y^2 + z^2;
f = matlabFunction(log(r)+r^(-1/2),'file','myfile');

If the file myfile.m already exists in the current folder, matlabFunction
replaces the existing function with the converted symbolic expression.
You can open and edit the resulting file:

function out1 = myfile(x,y,z)
%MYFILE
% OUT1 = MYFILE(X,Y,Z)

t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
t5 = t2 + t3 + t4;
out1 = log(t5) + 1.0./sqrt(t5);

Convert this expression to a MATLAB function using an empty string
to represent a path to the file. An empty string causes matlabFunction
to generate an anonymous function:

syms x y z
r = x^2 + y^2 + z^2;
f = matlabFunction(log(r)+r^(-1/2),'file','')

f =
@(x,y,z)log(x.^2+y.^2+z.^2)+1.0./sqrt(x.^2+y.^2+z.^2)

4-379

matlabFunction

When converting this expression to a MATLAB function, specify the
order of the input variables:

syms x y z
r = x^2 + y^2 + z^2;
matlabFunction(r, 'file', 'my_function',...
'vars', [y z x]);

The created my_function accepts variables in the required order:

function r = my_function(y,z,x)
%MY_FUNCTION
% R = MY_FUNCTION(Y,Z,X)

r = x.^2 + y.^2 + z.^2;

When converting this expression to a MATLAB function, specify its
second input argument as a vector:

syms x y z t
r = (x^2 + y^2 + z^2)*exp(-t);
matlabFunction(r, 'file', 'my_function',...
'vars', {t, [x y z]});

The resulting function operates on vectors:

function r = my_function(t,in2)
%MY_FUNCTION
% R = MY_FUNCTION(T,IN2)

x = in2(:,1);
y = in2(:,2);
z = in2(:,3);
r = exp(-t).*(x.^2+y.^2+z.^2);

4-380

matlabFunction

When converting this expression to a MATLAB function, specify the
names of the output variables:

syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;
f = matlabFunction(r, q, 'file', 'my_function',...
'outputs', {'name1','name2'});

The generated function returns name1 and name2:

function [name1,name2] = my_function(x,y,z)
%MY_FUNCTION
% [NAME1,NAME2] = MY_FUNCTION(X,Y,Z)

t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
name1 = t2+t3+t4;
if nargout > 1

name2 = t2-t3-t4;
end

Convert this MuPAD expression to a MATLAB function:

syms x y;
f = evalin(symengine, 'arcsin(x) + arccos(y)');
matlabFunction(f, 'file', 'my_function');

The generated file contains the same expressions written in the
MATLAB language:

function f = my_function(x,y)
%MY_FUNCTION
% F = MY_FUNCTION(X,Y)

4-381

matlabFunction

f = asin(x) + acos(y);

See Also ccode | evalin | feval | fortran | rehash |
matlabFunctionBlock | simscapeEquation | subs |
sym2poly

Concepts • “Generate MATLAB Functions” on page 2-131
• “Create MATLAB Functions from MuPAD Expressions” on page 3-48

4-382

matlabFunctionBlock

Purpose Convert symbolic expression to MATLAB Function block

Note emlBlock will be removed in a future version. Use
matlabFunctionBlock instead.

Syntax matlabFunctionBlock(block,f)
matlabFunctionBlock(block,f1,...,fN)
matlabFunctionBlock(block,f,Name,Value)
matlabFunctionBlock(block,f1,...,fN,Name,Value)

Description matlabFunctionBlock(block,f) converts the symbolic expression or
function f to a MATLAB Function block that you can use in Simulink
models. Here, block specifies the name of the block that you create or
modify.

matlabFunctionBlock(block,f1,...,fN) converts a vector of the
symbolic expressions or functions f1,...,fN to a MATLAB Function
block with multiple outputs.

matlabFunctionBlock(block,f,Name,Value) converts the symbolic
expression or function f to a MATLAB Function block using additional
options specified by one or more Name,Value pair arguments.

matlabFunctionBlock(block,f1,...,fN,Name,Value) converts a
vector of the symbolic expressions or functions f to a MATLAB Function
block with multiple outputs using additional options specified by one or
more Name,Value pair arguments.

Tips • To convert a MuPAD expression or function to a MATLAB
Function block, use f = evalin(symengine,'MuPAD_Expression')
or f = feval(symengine,'MuPAD_Function',x1,...,xn).
matlabFunctionBlock cannot correctly convert some MuPAD
expressions to a block. These expressions do not trigger an error
message. When converting a MuPAD expression or function that is
not on the MATLAB vs. MuPAD Expressions list, always check the
conversion results. To verify the results, you can:

4-383

matlabFunctionBlock

- Run the simulation containing the resulting block.

- Open the block and verify that all the functions are defined in
MATLAB Functions Supported for Code Generation.

Input
Arguments

f

Symbolic expression or function.

f1,...,fN

Vector of symbolic expressions or functions.

block

String specifying the block name that you create or modify.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’functionName’

Specify the name of the function. The value must be a string.

Default: The value coincides with the block name.

’outputs’

Specify the names of output ports. The value must be a cell array of
strings. The number of entries must equal or exceed the number of
free variables in f.

Default: The name of an output port consists of the word out
followed by the output port number, for example, out3.

’vars’

4-384

http://www.mathworks.com/help/ecoder/functions-supported-for-code-generation.html

matlabFunctionBlock

Specify the order of the variables and the corresponding input ports of
a block. The value must be either a cell array of strings or symbolic
arrays, or a vector of symbolic variables. The number of entries must
equal or exceed the number of free variables in f.

Default: When converting symbolic expressions, the order is
alphabetical. When converting symbolic functions, the input
arguments appear in front of other variables. Other variables
are sorted alphabetically.

Examples Before you can convert a symbolic expression to a MATLAB Function
block, create an empty model or open an existing one:

new_system('my_system');
open_system('my_system');

Use matlabFunctionBlock to create the block my_block containing
the symbolic expression:

syms x y z
f = x^2 + y^2 + z^2;
matlabFunctionBlock('my_system/my_block',f);

If you use the name of an existing block, matlabFunctionBlock
replaces the definition of an existing block with the converted symbolic
expression.

You can open and edit the resulting block. To open a block, double-click
it:

function f = my_block(x,y,z)
%#codegen

f = x.^2 + y.^2 + z.^2;

Save and close my_system:

save_system('my_system');
close_system('my_system');

4-385

matlabFunctionBlock

Create this symbolic function:

syms x y z
f(x, y, z) = x^2 + y^2 + z^2;

Convert f to a MATLAB Function block:

new_system('my_system');
open_system('my_system');
matlabFunctionBlock('my_system/my_block',f);

Generate a block and set the function name to my_function:

syms x y z
f = x^2 + y^2 + z^2;
new_system('my_system');
open_system('my_system');
matlabFunctionBlock('my_system/my_block', x, y, z,'functionName', 'my_fun

When generating a block, specify the order of the input variables:

syms x y z
f = x^2 + y^2 + z^2;
new_system('my_system');
open_system('my_system');
matlabFunctionBlock('my_system/my_block', x, y, z, 'vars', [y z x])

When generating a block, rename the output variables and the
corresponding ports:

syms x y z
f = x^2 + y^2 + z^2;
new_system('my_system');

4-386

matlabFunctionBlock

open_system('my_system');
matlabFunctionBlock('my_system/my_block', x, y, z, 'outputs',{'name1',

Call matlabFunctionBlock using several options simultaneously:

syms x y z
f = x^2 + y^2 + z^2;
new_system('my_system');
open_system('my_system');
matlabFunctionBlock('my_system/my_block', x, y, z,...
'functionName', 'my_function','vars', [y z x],...
'outputs',{'name1','name2','name3'})

Convert this MuPAD expression to a MATLAB Function block:

syms x y
new_system('my_system');
open_system('my_system');
f = evalin(symengine, 'arcsin(x) + arccos(y)');
matlabFunctionBlock('my_system/my_block', f);

The resulting block contains the same expressions written in the
MATLAB language:

function f = my_block(x,y)
%#codegen

f = asin(x) + acos(y);

See Also ccode | evalin | feval | fortran | matlabFunction |
simscapeEquation | subs | sym2poly

Concepts • “Generate MATLAB Function Blocks” on page 2-136
• “Create MATLAB Function Blocks from MuPAD Expressions” on
page 3-52

4-387

mfun

Purpose Numeric evaluation of special mathematical function

Syntax mfun('function',par1,par2,par3,par4)

Description mfun('function',par1,par2,par3,par4) numerically evaluates one
of the special mathematical functions listed in “Syntax and Definitions
of mfun Special Functions” on page 2-143. Each par argument is a
numeric quantity corresponding to a parameter for function. You can
use up to four parameters. The last parameter specified can be a matrix,
usually corresponding to X. The dimensions of all other parameters
depend on the specifications for function. You can access parameter
information for mfun functions in “Syntax and Definitions of mfun
Special Functions” on page 4-389.

MuPAD software evaluates function using 16-digit accuracy. Each
element of the result is a MATLAB numeric quantity. Any singularity
in function is returned as NaN.

Examples Evaluate the Fresnel cosine integral:

mfun('FresnelC',0:4)

The result is:

ans =
0 0.7799 0.4883 0.6057 0.4984

Evaluate the hyperbolic cosine integral:

mfun('Chi',[3*i 0])

ans =
0.1196 + 1.5708i NaN

See Also mfunlist

4-388

mfunlist

Purpose List special functions for use with mfun

Syntax mfunlist

Description mfunlist lists the special mathematical functions for use with the mfun
function. The following tables describe these special functions.

Syntax
and
Definitions
of mfun
Special
Functions

The following conventions are used in the next table, unless otherwise
indicated in the Arguments column.

x, y real argument

z, z1, z2 complex argument

m, n integer argument

mfun Special Functions

Function
Name Definition mfun Name Arguments

Bernoulli
numbers and
polynomials

Generating functions:

e

e
B x

t
n

xt

t n

n

n−
= ⋅

−

=

∞

∑
1

1

0
()

!

bernoulli(n)

bernoulli(n,t)
n ≥ 0

0 2< <t π

Bessel
functions

BesselI, BesselJ—Bessel
functions of the first kind.
BesselK, BesselY—Bessel
functions of the second kind.

BesselJ(v,x)

BesselY(v,x)

BesselI(v,x)

BesselK(v,x)

v is real.

Beta function
B x y

x y
x y

(,)
() ()
()

= ⋅
+

Γ Γ
Γ

Beta(x,y)

4-389

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Binomial
coefficients

m
n

m
n m n

⎛
⎝⎜

⎞
⎠⎟
=

−()
!

! !

= +
+() − +
Γ

Γ Γ
()

()
m

n m n
1

1 1

binomial(m,n)

Complete
elliptic
integrals

Legendre’s complete elliptic
integrals of the first, second, and
third kind. This definition uses
modulus k. The numerical ellipke
function and the MuPAD functions
for computing elliptic integrals use

the parameter m k= =2 2sin .

EllipticK(k)

EllipticE(k)

EllipticPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Complete
elliptic
integrals with
complementary
modulus

Associated complete elliptic
integrals of the first, second, and
third kind using complementary
modulus. This definition uses
modulus k. The numerical ellipke
function and the MuPAD functions
for computing elliptic integrals use

the parameter m k= =2 2sin .

EllipticCK(k)

EllipticCE(k)

EllipticCPi(a,k)

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

4-390

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Complementary
error function
and its iterated
integrals

erfc z e dt erf zt

z

() ()= ⋅ = −−
∞

∫2
1

2

erfc z e z(,)− = ⋅ −1
2 2

erfc n z erfc n t dt
z

(,) (,)= −
∞

∫ 1

erfc(z)

erfc(n,z)

n > 0

Dawson’s
integral F x e e dtx t

x

() = ⋅− ∫
2 2

0

dawson(x)

Digamma
function Ψ Γ Γ

Γ
() ln(())

()
()

x
d
dx

x
x
x

= =
′ Psi(x)

Dilogarithm
integral f x

t
t

dt
x

()
ln()=
−∫ 1

1

dilog(x) x > 1

Error function
erf z e dtt

z

() = −∫2 2

0

erf(z)

Euler
numbers and
polynomials

Generating function for Euler
numbers:

1

0cosh() !t
E

t
nn

n

n
=

=

∞

∑

euler(n)

euler(n,z)

n ≥ 0

t <
2

4-391

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Exponential
integrals Ei n z

e

t
dt

zt

n
(,) =

−∞

∫
1

Ei x PV
e
t

tx

() = −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−∞
∫

Ei(n,z)

Ei(x)

n ≥ 0

Real(z) > 0

Fresnel sine
and cosine
integrals

C x t dt
x

() cos= ⎛
⎝⎜

⎞
⎠⎟∫

2
2

0

S x t dt
x

() sin= ⎛
⎝⎜

⎞
⎠⎟∫

2
2

0

FresnelC(x)

FresnelS(x)

Gamma
function Γ()z t e dtz t= − −

∞

∫ 1

0

GAMMA(z)

Harmonic
function h n

k
n

k

n
() ()= = + +

=
∑ 1

1
1

Ψ γ
harmonic(n) n > 0

Hyperbolic sine
and cosine
integrals

Shi z
t

t
dt

z

()
sinh()= ∫

0

Chi z z
t

t
dt

z

() ln()
cosh()= + + −∫γ 1

0

Shi(z)

Chi(z)

4-392

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

(Generalized)
hypergeometric
function F n d z

n k
n

z

d k
d

k

i

i

k

i

j

i

ii

m
k

(, ,)

()
()

()
()

!

=

+ ⋅

+ ⋅

=

=

=

∞ ∏

∏
∑

Γ
Γ

Γ
Γ

1

1

0

where j and m are the number of
terms in n and d, respectively.

hypergeom(n,d,x)

where

n = [n1,n2,...]

d = [d1,d2,...]

n1,n2,...
are real.

d1,d2,...
are real and
nonnegative.

Incomplete
elliptic
integrals

Legendre’s incomplete elliptic
integrals of the first, second, and
third kind. This definition uses
modulus k. The numerical ellipke
function and the MuPAD functions
for computing elliptic integrals use

the parameter m k= =2 2sin .

EllipticF(x,k)

EllipticE(x,k)

EllipticPi(x,a,k)

0 < x ≤ ∞.

a is real,
–∞ < a < ∞.

k is real,
0 < k < 1.

Incomplete
gamma
function

Γ(,)a z e t dtt a

z

= ⋅− −
∞

∫ 1
GAMMA(z1,z2)

z1 = a
z2 = z

Logarithm of
the gamma
function

lnGAMMA() ln(())z z= Γ lnGAMMA(z)

Logarithmic
integral Li x PV

dt
t

Ei x
x

()
ln

(ln)=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=∫

0

Li(x) x > 1

4-393

mfunlist

mfun Special Functions (Continued)

Function
Name Definition mfun Name Arguments

Polygamma
function Ψ Ψ() () ()n

n
z

d
dz

z=

where Ψ()z is the Digamma
function.

Psi(n,z) n ≥ 0

Shifted sine
integral Ssi z Si z() ()= −

2

Ssi(z)

The following orthogonal polynomials are available using mfun. In all
cases, n is a nonnegative integer and x is real.

Orthogonal Polynomials

Polynomial mfun Name Arguments

Chebyshev of the first
and second kind

T(n,x)

U(n,x)

Gegenbauer G(n,a,x) a is a nonrational
algebraic expression
or a rational number
greater than -1/2.

Hermite H(n,x)

Jacobi P(n,a,b,x) a, b are nonrational
algebraic expressions or
rational numbers greater
than -1.

Laguerre L(n,x)

4-394

mfunlist

Orthogonal Polynomials (Continued)

Polynomial mfun Name Arguments

Generalized Laguerre L(n,a,x) a is a nonrational
algebraic expression
or a rational number
greater than -1.

Legendre P(n,x)

Examples mfun('H',5,10)

ans =
3041200

mfun('dawson',3.2)

ans =
0.1655

Limitations In general, the accuracy of a function will be lower near its roots and
when its arguments are relatively large.

Running time depends on the specific function and its parameters. In
general, calculations are slower than standard MATLAB calculations.

References [1] Abramowitz, M. and I.A., Stegun, Handbook of Mathematical
Functions With Formulas, Graphs, and Mathematical Tables. New
York: Dover, 1972.

See Also mfun

4-395

minpoly

Purpose Minimal polynomial of matrix

Syntax minpoly(A)
minpoly(A,var)

Description minpoly(A) returns a vector of the coefficients of the minimal
polynomial of A. If A is a symbolic matrix, minpoly returns a symbolic
vector. Otherwise, it returns a vector with elements of type double.

minpoly(A,var) returns the minimal polynomial of A in terms of var.

Input
Arguments

A

Matrix.

var

Free symbolic variable.

Default: If you do not specify var, minpoly returns a vector of
coefficients of the minimal polynomial instead of returning the
polynomial itself.

Definitions Minimal Polynomial of a Matrix

The minimal polynomial of a square matrix A is the monic polynomial
p(x) of the least degree, such that p(A) = 0.

Examples Compute the minimal polynomial of the matrix A in terms of the
variable x:

syms x;
A = sym([1 1 0; 0 1 0; 0 0 1]);
minpoly(A, x)

ans =
x^2 - 2*x + 1

4-396

minpoly

To find the coefficients of the minimal polynomial of A, call minpoly
with one argument:

A = sym([1 1 0; 0 1 0; 0 0 1]);
minpoly(A)

ans =
[1, -2, 1]

Find the coefficients of the minimal polynomial of the symbolic matrix
A. For this matrix, minpoly returns the symbolic vector of coefficients:

A = sym([0 2 0; 0 0 2; 2 0 0]);
P = minpoly(A)

P =
[1, 0, 0, -8]

Now find the coefficients of the minimal polynomial of the matrix B, all
elements of which are double-precision values. Note that in this case
minpoly returns coefficients as double-precision values:

B = [0 2 0; 0 0 2; 2 0 0];
P = minpoly(B)

P =
1 0 0 -8

See Also charpoly | eig | jordan | poly2sym | sym2poly

4-397

mod

Purpose Symbolic matrix element-wise modulus

Syntax C = mod(A,B)

Description C = mod(A,B) for symbolic matrices A and B with integer elements
is the positive remainder in the elementwise division of A by B. For
matrices with polynomial entries, mod(A, B) is applied to the individual
coefficients.

Examples ten = sym('10');
mod(2^ten, ten^3)

ans =
24

syms x
mod(x^3 - 2*x + 999, 10)

ans =
x^3 + 8*x + 9

See Also quorem

4-398

mupad

Purpose Start MuPAD notebook

Syntax mphandle = mupad
mphandle = mupad(file)

Description mphandle = mupad creates a MuPAD notebook, and keeps a handle
(pointer) to the notebook in the variable mphandle. You can use any
variable name you like instead of mphandle.

mphandle = mupad(file) opens the MuPAD notebook named file
and keeps a handle (pointer) to the notebook in the variable mphandle.
You also can use the argument file#linktargetname to refer to the
particular link target inside a notebook. In this case, the mupad function
opens the MuPAD notebook (file) and jumps to the beginning of
the link target linktargetname. If there are multiple link targets
with the name linktargetname, the mupad function uses the last
linktargetname occurrence.

Examples To start a new notebook and define a handle mphandle to the notebook,
enter:

mphandle = mupad;

To open an existing notebook named notebook1.mn located in the
current folder, and define a handle mphandle to the notebook, enter:

mphandle = mupad('notebook1.mn');

To open a notebook and jump to a particular location, create a link
target at that location inside a notebook and refer to it when opening
a notebook. For example, if you have the Conclusions section in
notebook1.mn, create a link target named conclusions and refer to it
when opening the notebook. The mupad function opens notebook1.mn
and scroll it to display the Conclusions section:

mphandle = mupad('notebook1.mn#conclusions');

For information about creating link targets, see “Work with Links”.

4-399

mupad

See Also getVar | mupadwelcome | openmn | openmu | setVar

4-400

mupadwelcome

Purpose Start MuPAD interfaces

Syntax mupadwelcome

Description mupadwelcome opens a window that enables you to start various
interfaces:

• MuPAD Notebook Interface, for performing calculations

• MATLAB Editor, for writing programs and libraries

• Documentation in the First Steps pane, for information and
examples

It also enables you to access recent MuPAD files or browse for files.

See Also mupad

4-401

mupadwelcome

How To • “Create, Open, and Save MuPAD Notebooks” on page 3-3

4-402

nchoosek

Purpose Binomial coefficient

Syntax nchoosek(n,k)

Description nchoosek(n,k) returns the binomial coefficient of n and k.

Tips • Calling nchoosek for numbers that are not symbolic objects invokes
the MATLAB nchoosek function.

• If one or both parameters are complex or negative numbers, convert
these numbers to symbolic objects using sym, and then call nchoosek
for those symbolic objects.

Input
Arguments

n

Symbolic number, variable or expression.

k

Symbolic number, variable or expression.

Definitions Binomial Coefficient

If n and k are integers and 0 ≤ k ≤ n, the binomial coefficient is defined
as:

n
k

n
k n k

!
! !

For complex numbers, the binomial coefficient is defined via the gamma
function:

n
k

n
k n k

1

1 1

4-403

nchoosek

Examples Compute the binomial coefficients for these expressions:

syms n
[nchoosek(n, n), nchoosek(n, n + 1), nchoosek(n, n - 1)]

ans =
[1, 0, n]

If one or both parameters are negative numbers, convert these numbers
to symbolic objects:

[nchoosek(sym(-1), 3), nchoosek(sym(-7), 2),
nchoosek(sym(-5), -5)]

ans =
[-1, 28, 1]

If one or both parameters are complex numbers, convert these numbers
to symbolic objects:

[nchoosek(sym(i), 3), nchoosek(sym(i), i),
nchoosek(sym(i), i + 1)]

ans =
[1/2 + i/6, 1, 0]

Differentiate the binomial coefficient:

syms n
diff(nchoosek(n, 2))

ans =
-(psi(n - 1) - psi(n + 1))*nchoosek(n, 2)

Expand the binomial coefficient:

4-404

nchoosek

syms n k
expand(nchoosek(n, k))

ans =
-(n*gamma(n))/(k^2*gamma(k)*gamma(n - k) -
k*n*gamma(k)*gamma(n - k))

Algorithms If k < 0 or n – k < 0, nchoosek(n,k) returns 0.

If one or both arguments are complex, nchoosek uses the formula
representing the binomial coefficient via the gamma function.

See Also beta | gamma | factorial | mfun | mfunlist | psi

How To • “Special Functions of Applied Mathematics” on page 2-142

4-405

ne

Purpose Define inequality

Syntax A ~= B
ne(A,B)

Description A ~= B creates a symbolic inequality.

ne(A,B) is equivalent to A ~= B.

Tips • If A and B are both numbers, then A ~= B compares A and B and
returns logical 1 (true) or logical 0 (false). Otherwise, A ~= B
returns a symbolic inequality. You can use that inequality as an
argument for such functions as assume, assumeAlso, and subs.

• If both A and B are arrays, then these arrays must have the
same dimensions. A ~= B returns an array of inequalities
A(i,j,...)~=B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is
expanded into an array of the same dimensions as the other array.
In other words, if A is a variable (for example, x), and B is an m-by-n
matrix, then A is expanded into m-by-n matrix of elements, each
set to x.

Input
Arguments

A

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

B

Number (integer, rational, floating-point, complex, or symbolic),
symbolic variable or expression, or array of numbers, symbolic variables
or expressions.

Examples Use assume and the relational operator ~= to set the assumption that x
does not equal to 5:

4-406

ne

syms x
assume(x ~= 5)

Solve this equation. The solver takes into account the assumption on
variable x, and therefore returns only one solution.

solve((x - 5)*(x - 6) == 0, x)

ans =
6

Alternatives You can also define inequality using eq (or its shortcut ==) and the
logical negation not (or ~). Thus, A ~= B is equivalent to ~(A == B).

See Also eq | ge | gt | isAlways | le | logical | lt

Concepts • “Set Assumptions” on page 1-35

4-407

norm

Purpose Norm of matrix or vector

Syntax norm(A)
norm(A,p)
norm(V)
norm(V,P)

Description norm(A) returns the 2-norm of matrix A.

norm(A,p) returns the p-norm of matrix A.

norm(V) returns the 2-norm of vector V.

norm(V,P) returns the P-norm of vector V.

Tips • Calling norm for a numeric matrix that is not a symbolic object
invokes the MATLAB norm function.

Input
Arguments

A

Symbolic matrix.

p

One of these values 1, 2, inf, or 'fro'.

• norm(A,1) returns the 1-norm of A.

• norm(A,2) or norm(A) returns the 2-norm of A.

• norm(A,inf) returns the infinity norm of A.

• norm(A,'fro') returns the Frobenius norm of A.

Default: 2

V

Symbolic vector.

P

4-408

norm

• norm(V,P) is computed as sum(abs(V).^P)^(1/P) for 1<=P<inf.

• norm(V) computes the 2-norm of V.

• norm(A,inf) is computed as max(abs(V)).

• norm(A,-inf) is computed as min(abs(V)).

Default: 2

Definitions 1-norm of a Matrix

The 1-norm of an m-by-n matrix A is defined as follows:

A A j n
j

ij
i

m

1
1

1

max , where

2-norm of a Matrix

The 2-norm of an m-by-n matrix A is defined as follows:

A AH
2 max eigenvalue of A

The 2-norm is also called the spectral norm of a matrix.

Frobenius Norm of a Matrix

The Frobenius norm of an m-by-n matrix A is defined as follows:

A AF ij
j

n

i

m

 2

11

Infinity Norm of a Matrix

The infinity norm of an m-by-n matrix A is defined as follows:

4-409

norm

A A A Aj
j

n

j
j

n

mj
j

n

 max , , ,1

1
2

1 1

P-norm of a Vector

The P-norm of a 1-by-n or n-by-1 vector V is defined as follows:

V VP i
P

i

n P

1

1

Here n must be an integer greater than 1.

Frobenius Norm of a Vector

The Frobenius norm of a 1-by-n or n-by-1 vector V is defined as follows:

V VF i
i

n

 2

1

The Frobenius norm of a vector coincides with its 2-norm.

Infinity and Negative Infinity Norm of a Vector

The infinity norm of a 1-by-n or n-by-1 vector V is defined as follows:

V V i ni max , where 1

The negative infinity norm of a 1-by-n or n-by-1 vector V is defined
as follows:

V V i ni min , where 1

Examples Compute the 2-norm of the inverse of the 3-by-3 magic square A:

A = inv(sym(magic(3)));
norm2 = norm(A)

4-410

norm

norm2 =
3^(1/2)/6

Use vpa to approximate the result with 20-digit accuracy:

vpa(norm2, 20)

ans =
0.28867513459481288225

Compute the 1-norm, Frobenius norm, and infinity norm of the inverse
of the 3-by-3 magic square A:

A = inv(sym(magic(3)));
norm1 = norm(A, 1)
normf = norm(A, 'fro')
normi = norm(A, inf)

norm1 =
16/45

normf =
391^(1/2)/60

normi =
16/45

Use vpa to approximate these results 20-digit accuracy:

vpa(norm1, 20)
vpa(normf, 20)
vpa(normi, 20)

ans =
0.35555555555555555556

ans =

4-411

norm

0.32956199888808647519

ans =
0.35555555555555555556

Compute the 1-norm, 2-norm, and 3-norm of the column vector V =
[Vx; Vy; Vz]:

syms Vx Vy Vz
V = [Vx; Vy; Vz];
norm1 = norm(V, 1)
norm2 = norm(V)
norm3 = norm(V, 3)

norm1 =
abs(Vx) + abs(Vy) + abs(Vz)

norm2 =
(abs(Vx)^2 + abs(Vy)^2 + abs(Vz)^2)^(1/2)

norm3 =
(abs(Vx)^3 + abs(Vy)^3 + abs(Vz)^3)^(1/3)

Compute the infinity norm, negative infinity norm, and Frobenius norm
of V:

normi = norm(V, inf)
normni = norm(V, -inf)
normf = norm(V, 'fro')

normi =
max(abs(Vx), abs(Vy), abs(Vz))

normni =
min(abs(Vx), abs(Vy), abs(Vz))

normf =

4-412

norm

(abs(Vx)^2 + abs(Vy)^2 + abs(Vz)^2)^(1/2)

See Also cond | equationsToMatrix | inv | linsolve | rank

4-413

not

Purpose Logical NOT for symbolic expressions

Syntax ~A
not(A)

Description ~A represents the logical negation. ~A is true when A is false and vice
versa.

not(A) is equivalent to ~A.

Tips • If you call simplify for a logical expression that contains symbolic
subexpressions, you can get symbolic values TRUE or FALSE. These
values are not the same as logical 1 (true) and logical 0 (false). To
convert symbolic TRUE or FALSE to logical values, use logical.

Input
Arguments

A

Symbolic equation, inequality, or logical expression that contains
symbolic subexpressions.

Examples Create this logical expression using ~:

syms x y
xy = ~(x > y);

Use assume to set the corresponding assumption on variables x and y:

assume(xy);

Verify that the assumption is set:

assumptions

ans =
not y < x

Create this logical expression using logical operators ~ and &:

4-414

not

syms x
range = abs(x) < 1 & ~(abs(x) < 1/3);

Replace variable x with these numeric values. Note that subs does not
evaluate these inequalities to logical 1 or 0.

x1 = subs(range, x, 0)
x2 = subs(range, x, 2/3)

x1 =
0 < 1 and not 0 < 1/3

x2 =
2/3 < 1 and not 2/3 < 1/3

To evaluate these inequalities to logical 1 or 0, use logical or isAlways:

logical(x1)
isAlways(x2)

ans =
0

ans =
1

Note that simplify does not simplify these logical expressions to logical
1 or 0. Instead, they return symbolic values TRUE or FALSE.

s1 = simplify(x1)
s2 = simplify(x2)

s1 =
FALSE

s2 =
TRUE

Convert symbolic TRUE or FALSE to logical values using logical:

4-415

not

logical(s1)
logical(s2)

ans =
0

ans =
1

See Also all | and | any | isAlways | logical | or | xor

4-416

null

Purpose Form basis for null space of matrix

Syntax Z = null(A)

Description Z = null(A) returns a list of vectors that form the basis for the null
space of a matrix A. The product A*Z is zero. size(Z, 2) is the nullity
of A. If A has full rank, Z is empty.

Examples Find the basis for the null space and the nullity of the magic square of
symbolic numbers. Verify that A*Z is zero:

A = sym(magic(4));
Z = null(A)
nullityOfA = size(Z, 2)
A*Z

The results are:

Z =
-1
-3
3
1

nullityOfA =
1

ans =
0
0
0
0

Find the basis for the null space of the matrix B that has full rank:

B = sym(hilb(3))

4-417

null

Z = null(B)

The result is:

B =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Z =
[empty sym]

See Also rank | rref | size | svd

4-418

numden

Purpose Numerator and denominator

Syntax [N,D] = numden(A)

Description [N,D] = numden(A) converts each element of A to a rational form where
the numerator and denominator are relatively prime polynomials
with integer coefficients. A is a symbolic or a numeric matrix. N is
the symbolic matrix of numerators, and D is the symbolic matrix of
denominators.

Examples Find the numerator and denominator of the symbolic number:

[n, d] = numden(sym(4/5))

The result is:

n =
4

d =
5

Find the numerator and denominator of the symbolic expression:

syms x y
[n,d] = numden(x/y + y/x)

The result is:

n =
x^2 + y^2

d =
x*y

The statements

syms a b

4-419

numden

A = [a, 1/b]
[n,d] = numden(A)

return

A =
[a, 1/b]

n =
[a, 1]

d =
[1, b]

4-420

odeToVectorField

Purpose Convert higher-order differential equations to systems of first-order
differential equations

Syntax V = odeToVectorField(eqn1,...,eqnN)
[V,Y] = odeToVectorField(eqn1,...,eqnN)

Description V = odeToVectorField(eqn1,...,eqnN) converts higher-order
differential equations eqn1,...,eqnN to a system of first-order
differential equations. This syntax returns a symbolic vector
representing the resulting system of first-order differential equations.

[V,Y] = odeToVectorField(eqn1,...,eqnN) converts higher-order
differential equations eqn1,...,eqnN to a system of first-order
differential equations. This syntax returns two symbolic vectors. The
first vector represents the resulting system of first-order differential
equations. The second vector shows the substitutions made during
conversion.

Tips • The names of symbolic variables used in differential equations should
not contain the letter D because odeToVectorField assumes that D
is a differential operator and any character immediately following D
is a dependent variable.

• To generate a MATLAB function for the resulting system of
first-order differential equations, use matlabFunction with V as an
input. Then, you can use the generated MATLAB function as an
input for the MATLAB numerical solvers ode23 and ode45.

• The highest-order derivatives must appear in eqn1,...,eqnN
linearly. For example, odeToVectorField can convert these
equations:

- y″(t) = –t2

- y*y″(t) = –t2. odeToVectorField can convert this equation because
it can be rewritten as y″(t) = –t2/y.

However, it cannot convert these equations:

- y″(t)2 = –t2

4-421

odeToVectorField

- sin(y″(t)) = –t2

Input
Arguments

eqn1,...,eqnN

Symbolic equations, strings separated by commas and representing a
system of ordinary differential equations, or array of symbolic equations
or strings. Each equation or string represents an ordinary differential
equation.

When representing eqn as a symbolic equation, you must create a
symbolic function, for example y(x). Here x is an independent variable
for which you solve an ordinary differential equation. Use the ==
operator to create an equation. Use the diff function to indicate
differentiation. For example, to convert d2y(x)/dt2 = x*y(x), use:

syms y(x)
V = odeToVectorField(diff(y, 2) == x*y)

When representing eqn as a string, use the letter D to indicate
differentiation. By default, odeToVectorField assumes that the
independent variable is t. Thus, Dy means dy/dt. You can specify the
independent variable. The letter D followed by a digit indicates repeated
differentiation. Any character immediately following a differentiation
operator is a dependent variable. For example, to convert d2y(x)/dt2 =
x*y(x), enter:

V = odeToVectorField('D2y = x*y','x')

or

V = odeToVectorField('D2y == x*y','x')

Output
Arguments

V

Symbolic vector representing the system of first-order differential
equations. Each element of this vector is the right side of the first-order
differential equation Y[i]′ = V[i].

Y

4-422

odeToVectorField

Symbolic vector representing the substitutions made when converting
the input equations eqn1,...,eqnN to the elements of V.

Examples Convert this fifth-order differential equation to a system of first-order
differential equations:

syms y(t)
V = odeToVectorField(t^3*diff(y, 5) + 2*t*diff(y,
4) + diff(y, 2) + y^2 == -3*t)

V =
Y[2]
Y[3]
Y[4]
Y[5]

-(3*t + Y[1]^2 + 2*t*Y[5] + Y[3])/t^3

Convert this system of first- and second-order differential equations to
a system of first-order differential equations. To see the substitutions
that odeToVectorField makes for this conversion, use two output
arguments:

syms f(t) g(t)
[V,Y] = odeToVectorField(diff(f, 2) == f + g,
diff(g) == -f + g)

V =
Y[1] - Y[2]

Y[3]
Y[1] + Y[2]

Y =
g
f

Df

4-423

odeToVectorField

Convert this second-order differential equation to a system of first-order
differential equations:

syms y(t)
V = odeToVectorField(diff(y, 2) == (1 - y^2)*diff(y) - y)

V =
Y[2]

- (Y[1]^2 - 1)*Y[2] - Y[1]

Generate a MATLAB function from this system of first-order differential
equations using matlabFunction with V as an input:

M = matlabFunction(V,'vars', {'t','Y'})

M =
@(t,Y)[Y(2);-(Y(1).^2-1.0).*Y(2)-Y(1)]

To solve this system, call the MATLAB ode45 numerical solver using
the generated MATLAB function as an input:

sol = ode45(M,[0 20],[2 0]);

Plot the solution using linspace to generate 100 points in the interval
[0,20] and deval to evaluate the solution for each point:

x = linspace(0,20,100);
y = deval(sol,x,1);
plot(x,y);

4-424

odeToVectorField

Convert the second-order differential equation y″(x) = x with the initial
condition y(0) = t to a system. Specify the differential equation and
initial condition as strings. Also specify that x is an independent
variable:

V = odeToVectorField('D2y = x', 'y(0) = t', 'x')

V =
Y[2]

x

4-425

odeToVectorField

If you define equations by strings and do not specify the independent
variable, odeToVectorField assumes that the independent variable
is t. This assumption makes the equation y″(t) = x inconsistent with
the initial condition y(0) = t. In this case, y″(t) = d2t/dt2 = 0, and
odeToVectorField errors.

Algorithms To convert an nth-order differential equation

a t y a t y a t y a t y a t y an
n

n
n

n
n() () () () ()() () ()

1

1
2

2
2 1 00 0() ()t y r t

into a system of first-order differential equations, make these
substitutions:

Y y

Y y

Y y

Y y

Y y

n
n

n
n

1

2

3

1
2

1

()

()

Using the new variables, you can rewrite the equation as a system of n
first-order differential equations:

Y y Y

Y y Y

Y y Y

Y
a t
a t

Y
a

n
n

n

n
n

n
n

n

1 2

2 3

1
1

1

()

22
1

1
2

0
1

t
a t

Y
a t
a t

Y
a t
a t

Y
r t

a tn
n

n n n

 ...

odeToVectorField returns the right sides of these equations as the
elements of vector V.

4-426

odeToVectorField

When you convert a system of higher-order differential equations to
a system of first-order differential equations, it can be helpful to see
the substitutions that odeToVectorField made during the conversion.
These substitutions are listed as elements of vector Y.

See Also dsolve | matlabFunction | ode23 | ode45 | syms

4-427

openmn

Purpose Open MuPAD notebook

Syntax h = openmn(file)

Description h = openmn(file) opens the MuPAD notebook file named file, and
returns a handle to the file in h. The command h = mupad(file)
accomplishes the same task.

Examples To open a notebook named e-e-x.mn in the folder \Documents\Notes of
drive H:, enter:

h = openmn('H:\Documents\Notes\e-e-x.mn');

See Also mupad | open | openmu | openxvc | openxvz

4-428

openmu

Purpose Open MuPAD program file

Syntax openmu(file)

Description openmu(file) opens the MuPAD program file named file in the
MATLAB Editor. The command open(file) accomplishes the same
task.

Examples To open a program file named yyx.mu located in the folder
\Documents\Notes on drive H:, enter:

openmu('H:\Documents\Notes\yyx.mu');

This command opens yyx.mu in the MATLAB Editor.

See Also mupad | open | openmn | openxvc | openxvz

4-429

openxvc

Purpose Open MuPAD XVC graphics file

Syntax openxvc(file)

Description openxvc(file) opens the MuPAD XVC graphics file named file.

Input
Arguments

file

MuPAD XVC graphics file.

Examples To open a graphics file named image1.xvc in the folder
\Documents\Notes of drive H:, enter:

openxvc('H:\Documents\Notes\image1.xvc');

See Also mupad | open | openmn | openmu | openxvz

4-430

openxvz

Purpose Open MuPAD XVZ graphics file

Syntax openxvz(file)

Description openxvz(file) opens the MuPAD XVZ graphics file named file.

Input
Arguments

file

MuPAD XVZ graphics file.

Examples To open a graphics file named image1.xvz in the folder
\Documents\Notes of drive H:, enter:

openxvz('H:\Documents\Notes\image1.xvz');

See Also mupad | open | openmn | openmu | openxvc

4-431

or

Purpose Logical OR for symbolic expressions

Syntax A | B
or(A,B)

Description A | B represents the logical disjunction. A | B is true when either A or
B or both are true.

or(A,B) is equivalent to A | B.

Tips • If you call simplify for a logical expression containing symbolic
subexpressions, you can get symbolic values TRUE or FALSE. These
values are not the same as logical 1 (true) and logical 0 (false). To
convert symbolic TRUE or FALSE to logical values, use logical.

Input
Arguments

A

Symbolic equation, inequality, or logical expression that contains
symbolic subexpressions.

B

Symbolic equation, inequality, or logical expression that contains
symbolic subexpressions.

Examples Combine these symbolic inequalities into the logical expression using |:

syms x y
xy = x >= 0 | y >= 0;

Set the corresponding assumptions on variables x and y using assume:

assume(xy)

Verify that the assumptions are set:

assumptions

0 <= x or 0 <= y

4-432

or

Combine two symbolic inequalities into the logical expression using |:

syms x
range = x < -1 | x > 1;

Replace variable x with these numeric values. If you replace x with 10,
one inequality is valid. If you replace x with 0, both inequalities are
invalid. Note that subs does not evaluate these inequalities to logical 1
or 0.

x1 = subs(range, x, 10)
x2 = subs(range, x, 0)

x1 =
1 < 10 or 10 < -1

x2 =
0 < -1 or 1 < 0

To evaluate these inequalities to logical 1 or 0, use logical or isAlways:

logical(x1)
isAlways(x2)

ans =
1

ans =
0

Note that simplify does not simplify these logical expressions to logical
1 or 0. Instead, they return symbolic values TRUE or FALSE.

s1 = simplify(x1)
s2 = simplify(x2)

s1 =

4-433

or

TRUE

s2 =
FALSE

Convert symbolic TRUE or FALSE to logical values using logical:

logical(s1)
logical(s2)

ans =
1

ans =
0

See Also all | and | any | isAlways | logical | not | xor

4-434

orth

Purpose Orthonormal basis for range of symbolic matrix

Syntax B = orth(A)
B = orth(A,'real')
B = orth(A,'skipNormalization')
B = orth(A,'real','skipNormalization')

Description B = orth(A) computes an orthonormal basis for the range of A.

B = orth(A,'real') computes an orthonormal basis using a real
scalar product in the orthogonalization process.

B = orth(A,'skipNormalization') computes a non-normalized
orthogonal basis. In this case, the vectors forming the columns of B
do not necessarily have length 1.

B = orth(A,'real','skipNormalization') computes a
non-normalized orthogonal basis using a real scalar product in the
orthogonalization process.

Tips • Calling orth for numeric arguments that are not symbolic objects
invokes the MATLAB orth function. Results returned by MATLAB
orth can differ from results returned by orth because these two
functions use different algorithms to compute an orthonormal
basis. The Symbolic Math Toolbox orth function uses the classic
Gram-Schmidt orthogonalization algorithm. The MATLAB orth
function uses the modified Gram-Schmidt algorithm because the
classic algorithm is numerically unstable.

• Using 'skipNormalization' to compute an orthogonal basis
instead of an orthonormal basis can speed up your computations.

Input
Arguments

A

Symbolic matrix.

’real’

4-435

orth

Flag that prompts orth to avoid using a complex scalar product in the
orthogonalization process.

’skipNormalization’

Flag that prompts orth to skip normalization and compute an
orthogonal basis instead of an orthonormal basis. If you use this flag,
lengths of the resulting vectors (the columns of matrix B) are not
required to be 1.

Output
Arguments

B

Symbolic matrix.

Definitions Orthonormal Basis

An orthonormal basis for the range of matrix A is matrix B, such that:

• B'*B = I, where I is the identity matrix.

• The columns of B span the same space as the columns of A.

• The number of columns of B is the rank of A.

Examples Compute an orthonormal basis of the range of this matrix. Because
these numbers are not symbolic objects, you get floating-point results.

A = [2 -3 -1; 1 1 -1; 0 1 -1];
B = orth(A)

B =
-0.9859 -0.1195 0.1168
0.0290 -0.8108 -0.5846
0.1646 -0.5729 0.8029

Now, convert this matrix to a symbolic object, and compute an
orthonormal basis:

A = sym([2 -3 -1; 1 1 -1; 0 1 -1]);
B = orth(A)

4-436

orth

B =
[(2*5^(1/2))/5, -6^(1/2)/6, -(2^(1/2)*15^(1/2))/30]
[5^(1/2)/5, 6^(1/2)/3, (2^(1/2)*15^(1/2))/15]
[0, 6^(1/2)/6, -(2^(1/2)*15^(1/2))/6]

You can use double to convert this result to the double-precision
numeric form. The resulting matrix differs from the matrix returned
by the MATLAB orth function because these functions use different
versions of the Gram-Schmidt orthogonalization algorithm:

double(B)

ans =
0.8944 -0.4082 -0.1826
0.4472 0.8165 0.3651

0 0.4082 -0.9129

Verify that B'*B = I, where I is the identity matrix:

B'*B

ans =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

Now, verify that the 2-norm of each column of B is 1:

norm(B(:, 1))
norm(B(:, 2))
norm(B(:, 3))

ans =
1

ans =
1

ans =

4-437

orth

1

Compute an orthonormal basis of this matrix using 'real' to avoid
complex conjugates:

syms a
A = [a 1; 1 a];
B = orth(A,'real')

B =
[a/(abs(a)^2 + 1)^(1/2),
-(a^2 - 1)/((a^2 + 1)*(abs(a^2 - 1)^2/abs(a^2 + 1)^2 +...
abs(a*(a^2 - 1))^2/abs(a^2 + 1)^2)^(1/2))]
[1/(abs(a)^2 + 1)^(1/2),
(a*(a^2 - 1))/((a^2 + 1)*(abs(a^2 - 1)^2/abs(a^2 + 1)^2 +...
abs(a*(a^2 - 1))^2/abs(a^2 + 1)^2)^(1/2))]

Compute an orthogonal basis of this matrix using
'skipNormalization':

syms a
A = [a 1; 1 a];
B = orth(A,'skipNormalization')

B =
[a, -(a^2 - 1)/(a*conj(a) + 1)]
[1, -(conj(a) - a^2*conj(a))/(a*conj(a) + 1)]

Compute an orthogonal basis of this matrix using 'skipNormalization'
and 'real':

syms a
A = [a 1; 1 a];
B = orth(A,'skipNormalization','real')

4-438

orth

B =
[a, -(a^2 - 1)/(a^2 + 1)]
[1, (a*(a^2 - 1))/(a^2 + 1)]

Algorithms orth uses the classic Gram-Schmidt orthogonalization algorithm.

See Also norm | null | orth | rank | svdlinalg::normalize |
linalg::orthog

4-439

pinv

Purpose Moore-Penrose inverse (pseudoinverse) of symbolic matrix

Syntax X = pinv(A)

Description X = pinv(A) returns the pseudoinverse of A. Pseudoinverse is also
called the Moore-Penrose inverse.

Tips • Calling pinv for numeric arguments that are not symbolic objects
invokes the MATLAB pinv function.

• For an invertible matrix A, the Moore-Penrose inverse X of A coincides
with the inverse of A.

Input
Arguments

A

Symbolic m-by-n matrix.

Output
Arguments

X

Symbolic n-by-m matrix, such that A*X*A = A and X*A*X = X.

Definitions Moore-Penrose Pseudoinverse

The pseudoinverse of an m-by-n matrix A is an n-by-m matrix X, such
that A*X*A = A and X*A*X = X. The matrices A*X and X*A must be
Hermitian.

Examples Compute the pseudoinverse of this matrix. Because these numbers are
not symbolic objects, you get floating-point results.

A = [1 1i 3; 1 3 2];
X = pinv(A)

X =
0.0729 + 0.0312i 0.0417 - 0.0312i

-0.2187 - 0.0521i 0.3125 + 0.0729i
0.2917 + 0.0625i 0.0104 - 0.0938i

4-440

pinv

Now, convert this matrix to a symbolic object, and compute the
pseudoinverse:

A = sym([1 1i 3; 1 3 2]);
X = pinv(A)

X =
[7/96 + i/32, 1/24 - i/32]
[- 7/32 - (5*i)/96, 5/16 + (7*i)/96]
[7/24 + i/16, 1/96 - (3*i)/32]

Check that A*X*A = A and X*A*X = X:

logical(A*X*A == A)

ans =
1 1 1
1 1 1

logical(X*A*X == X)

ans =
1 1
1 1
1 1

Now, verify that A*X and X*A are Hermitian matrices:

logical(A*X == (A*X)')

ans =
1 1
1 1

logical(X*A == (X*A)')

ans =
1 1 1
1 1 1

4-441

pinv

1 1 1

Compute the pseudoinverse of this matrix:

syms a;
A = [1 a; -a 1];
X = pinv(A)

X =
[(a*conj(a) + 1)/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...
(conj(a)*(a - conj(a)))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1),
- (a - conj(a))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...
(conj(a)*(a*conj(a) + 1))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1)]
[(a - conj(a))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) +...
(conj(a)*(a*conj(a) + 1))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1),
(a*conj(a) + 1)/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...
(conj(a)*(a - conj(a)))/(a^2*conj(a)^2 + a^2
+ conj(a)^2 + 1)]

Now, compute the pseudoinverse of A assuming that a is real:

assume(a,'real')
A = [1 a; -a 1];
X = pinv(A)

X =
[1/(a^2 + 1), -a/(a^2 + 1)]
[a/(a^2 + 1), 1/(a^2 + 1)]

For further computations, remove the assumption:

syms a clear

See Also invlinalg::pseudoInverse | rank | pinv | svd

4-442

poles

Purpose Poles of expression or function

Syntax poles(f,var)
P = poles(f,var)
[P,N] = poles(f,var)
[P,N,R] = poles(f,var)
poles(f,var,a,b)
P = poles(f,var,a,b)
[P,N] = poles(f,var,a,b)
[P,N,R] = poles(f,var,a,b)

Description poles(f,var) finds nonremovable singularities of f. These
singularities are called the poles of f. Here, f is a function of the
variable var.

P = poles(f,var) finds the poles of f and assigns them to vector P.

[P,N] = poles(f,var) finds the poles of f and their orders. This
syntax assigns the poles to vector P and their orders to vector N.

[P,N,R] = poles(f,var) finds the poles of f and their orders and
residues. This syntax assigns the poles to vector P, their orders to vector
N, and their residues to vector R.

poles(f,var,a,b) finds the poles in the interval (a,b).

P = poles(f,var,a,b) finds the poles of f in the interval (a,b) and
assigns them to vector P.

[P,N] = poles(f,var,a,b) finds the poles of f in the interval (a,b)
and their orders. This syntax assigns the poles to vector P and their
orders to vector N.

[P,N,R] = poles(f,var,a,b) finds the poles of f in the interval (a,b)
and their orders and residues. This syntax assigns the poles to vector P,
their orders to vector N, and their residues to vector R.

Tips • If poles cannot find all nonremovable singularities and cannot prove
that they do not exist, it issues a warning and returns an empty
symbolic object.

4-443

poles

• If poles can prove that f has no poles (either in the specified interval
(a,b) or in the complex plane), it returns an empty symbolic object
without issuing a warning.

• a and b must be real numbers or infinities. If you provide complex
numbers, poles uses an empty interval and returns an empty
symbolic object.

Input
Arguments

f

Symbolic expression or function.

var

Symbolic variable.

Default: Variable determined by symvar.

a,b

Real numbers (including infinities) that specify the search interval for
function poles.

Default: Entire complex plane.

Output
Arguments

P

Symbolic vector containing the values of poles.

N

Symbolic vector containing the orders of poles.

R

Symbolic vector containing the residues of poles.

Examples Find the poles of these expressions:

syms x;

4-444

poles

poles(1/(x - i))
poles(sin(x)/(x - 1))

ans =
i

ans =
1

Find the poles of this expression. If you do not specify a variable, poles
uses the default variable determined by symvar:

syms x a;
poles(1/((x - 1)*(a - 2)))

ans =
1

To find the poles of this expression as a function of variable a, specify a
as the second argument:

syms x a;
poles(1/((x - 1)*(a - 2)), a)

ans =
2

Find the poles of the tangent function in the interval (-pi, pi):

syms x;
poles(tan(x), x, -pi, pi)

ans =
-pi/2
pi/2

4-445

poles

The tangent function has an infinite number of poles. If you do not
specify the interval, poles cannot find all of them. It issues a warning
and returns an empty symbolic object:

syms x;
poles(tan(x))

Warning: Cannot determine the poles.
ans =
[empty sym]

If poles can prove that the expression or function does not have any
poles in the specified interval, it returns an empty symbolic object
without issuing a warning:

syms x;
poles(tan(x), x, -1, 1)

ans =
[empty sym]

Use two output vectors to find the poles of this expression and their
orders. Restrict the search interval to (-pi, 10*pi):

syms x;
[Poles, Orders] = poles(tan(x)/(x - 1)^3, x, -pi, pi)

Poles =
-pi/2
pi/2

1

Orders =
1
1
3

4-446

poles

Use three output vectors to find the poles of this expression and their
orders and residues:

syms x a
[Poles, Orders, Residues] = poles(a/x^2/(x - 1), x)

Poles =
1
0

Orders =
1
2

Residues =
a

-a

See Also limit | solve | symvar | vpasolve

4-447

poly

Purpose Characteristic polynomial of matrix

Note poly has been removed. Use charpoly instead.

Syntax p = poly(A)
p = poly(A,v)
poly(sym(A))

Description p = poly(A) returns the coefficients of the characteristic polynomial of
a numeric matrix A. For symbolic A, poly(A) returns the characteristic
polynomial of A in terms of the default variable x. If the elements of A
already contain the variable x, the default variable is t. If the elements
of A contain both x and t, the default variable is still t.

p = poly(A,v) returns the characteristic polynomial of a symbolic or
numeric matrix A in terms of the variable v.

poly(sym(A)) approximately equals poly2sym(poly(A)) for numeric
A. The approximation is due to round-off error.

See Also charpoly | eig | jordan | minpoly | poly2sym | solve

4-448

poly2sym

Purpose Polynomial coefficient vector to symbolic polynomial

Syntax r = poly2sym(c)
r = poly2sym(c,v)

Description r = poly2sym(c) returns a symbolic representation of the polynomial
whose coefficients form the numeric vector c. The default symbolic
variable is x. The variable v can be specified as a second input
argument. If c = [c1 c2 ... cn], r = poly2sym(c) has the form

c x c x cn n
n1

1
2

2− −+ + +...

poly2sym uses sym’s default (rational) conversion mode to convert the
numeric coefficients to symbolic constants. This mode expresses the
symbolic coefficient approximately as a ratio of integers, if sym can find
a simple ratio that approximates the numeric value, otherwise as an
integer multiplied by a power of 2.

r = poly2sym(c,v) is a polynomial in the symbolic variable v with
coefficients from the vector c. If v has a numeric value and sym
expresses the elements of c exactly, eval(poly2sym(c)) returns the
same value as polyval(c, v).

Examples The command

poly2sym([1 3 2])

returns

ans =
x^2 + 3*x + 2

The command

poly2sym([.694228, .333, 6.2832])

returns

4-449

poly2sym

ans =
(6253049924220329*x^2)/9007199254740992 +...
(333*x)/1000 + 3927/625

The command

poly2sym([1 0 1 -1 2], y)

returns

ans =
y^4 + y^2 - y + 2

See Also sym | sym2poly | polyval

4-450

potential

Purpose Potential of vector field

Syntax potential(V,X)
potential(V,X,Y)

Description potential(V,X) computes the potential of the vector field V with
respect to the vector X in Cartesian coordinates. The vector field V must
be a gradient field.

potential(V,X,Y) computes the potential of vector field V with respect
to X using Y as base point for the integration.

Tips • If potential cannot verify that V is a gradient field, it returns NaN.

• Returning NaN does not prove that V is not a gradient field. For
performance reasons, potential sometimes does not sufficiently
simplify partial derivatives, and therefore, it cannot verify that the
field is gradient.

• If Y is a scalar, then potential expands it into a vector of the same
length as X with all elements equal to Y.

Input
Arguments

V

Vector of symbolic expressions or functions.

X

Vector of symbolic variables with respect to which you compute the
potential.

Y

Vector of symbolic variables, expressions, or numbers that you want
to use as a base point for the integration. If you use this argument,
potential returns P(X) such that P(Y) = 0. Otherwise, the potential
is only defined up to some additive constant.

4-451

potential

Definitions Scalar Potential of a Gradient Vector Field

The potential of a gradient vector field V(X) = [v1(x1,x2,...),v2(x1,x2,...),...]

is the scalar P(X) such that V X P X .
The vector field is gradient if and only if the corresponding Jacobian
is symmetrical:

v
x

v

x
i

j

j

i

The potential function represents the potential in its integral form:

P X X Y V Y X Y d
0

1

Examples Compute the potential of this vector field with respect to the vector
[x, y, z]:

syms x y z
P = potential([x, y, z*exp(z)], [x y z])

P =
x^2/2 + y^2/2 + exp(z)*(z - 1)

Use the gradient function to verify the result:

simplify(gradient(P, [x y z]))

ans =
x
y

z*exp(z)

4-452

potential

Compute the potential of this vector field specifying the integration
base point as [0 0 0]:

syms x y z
P = potential([x, y, z*exp(z)], [x y z], [0 0 0])

P =
x^2/2 + y^2/2 + exp(z)*(z - 1) + 1

Verify that P([0 0 0]) = 0:

subs(P, [x y z], [0 0 0])

ans =
0

If a vector field is not gradient, potential returns NaN:

potential([x*y, y], [x y])

ans =
NaN

See Also curl | diff | divergence | gradient | jacobian | hessian |
laplacian | vectorPotential

4-453

pretty

Purpose Prettyprint symbolic expressions

Syntax pretty(X)

Description pretty(X) prints symbolic output of X in a format that resembles
typeset mathematics.

Examples The following statements:

A = sym(pascal(2))
B = eig(A)
pretty(B)

return:

A =
[1, 1]
[1, 2]

B =
3/2 - 5^(1/2)/2
5^(1/2)/2 + 3/2

+- -+
| 1/2 |
| 5 |
| 3/2 - ---- |
| 2 |
| |
| 1/2 |
| 5 |
| ---- + 3/2 |
| 2 |
+- -+

4-454

pretty

Solve this equation, and then use pretty to represent the solutions in
the format similar to typeset mathematics:

syms a b c d x
s = solve(a*x^3 + b*x^2 + c*x + d, x);
pretty(s)

For better readability, pretty uses abbreviations when representing
long expressions:

+- -+

| b #2 |

| #1 - --- - -- |

| 3 a #1 |

| |

| 1/2 / #2 \ |

| 3 | -- + #1 | i |

| #2 \ #1 / b #1 |

| ---- + ------------------ - --- - -- |

| 2 #1 2 3 a 2 |

| |

| 1/2 / #2 \ |

| 3 | -- + #1 | i |

| #2 \ #1 / b #1 |

| ---- - ------------------ - --- - -- |

| 2 #1 2 3 a 2 |

+- -+

where

/ / / 3 \2 \1/2 3 \1/3

| | | d b b c | 3 | b d b c |

#1 == | | | --- + ----- - ---- | + #2 | - ----- - --- + ---- |

| | | 2 a 3 2 | | 3 2 a 2 |

\ \ \ 27 a 6 a / / 27 a 6 a /

2

4-455

pretty

b c

#2 == - ---- + ---

2 3 a

9 a

4-456

psi

Purpose Digamma function

Syntax psi(x)
psi(k,x)
psi(A)
psi(k,A)

Description psi(x) computes the digamma function of x.

psi(k,x) computes the polygamma function of x, which is the kth
derivative of the digamma function at x.

psi(A) computes the digamma function of each element of A.

psi(k,A) computes the polygamma function of A, which is the kth
derivative of the digamma function at A.

Tips • Calling psi for a number that is not a symbolic object invokes the
MATLAB psi function. This function accepts real arguments only. If
you want to compute the polygamma function for a complex number,
use sym to convert that number to a symbolic object, and then call
psi for that symbolic object.

• psi(0, x) is equivalent to psi(x).

Input
Arguments

x

Nonnegative symbolic number, variable, or expression.

k

Nonnegative integer.

A

Vector or matrix of nonnegative symbolic numbers, variables, or
expressions.

4-457

psi

Definitions digamma Function

The digamma function is the first derivative of the logarithm of the
gamma function:

 x
d
dx

x
x
x

ln

polygamma Function

The polygamma function of the order k is the (k + 1)th derivative of the
logarithm of the gamma function:

 k
k

k

k

k
x

d

dx
x

d

dx
x

1

1
ln

Examples Compute the digamma and polygamma functions for these numbers.
Because these numbers are not symbolic objects, you get the
floating-point results:

[psi(1/2) psi(2, 1/2) psi(1.34) psi(1, sin(pi/3))]

The results are:

ans =
-1.9635 -16.8288 -0.1248 2.0372

Compute the digamma and polygamma functions for the numbers
converted to symbolic objects:

[psi(sym(1/2)), psi(1, sym(1/2)), psi(sym(1/4))]

ans =

[- eulergamma - 2*log(2), pi^2/2, - eulergamma - pi/2 - 3*log(2)]

For some symbolic (exact) numbers, psi returns unresolved symbolic
calls:

4-458

psi

psi(sym(sqrt(2)))

ans =
psi(2^(1/2))

Compute the derivatives of these expressions containing the digamma
and polygamma functions:

syms x
diff(psi(1, x^3 + 1), x)
diff(psi(sin(x)), x)

ans =
3*x^2*psi(2, x^3 + 1)

ans =
cos(x)*psi(1, sin(x))

Expand the expressions containing the digamma functions:

syms x
expand(psi(2*x + 3))
expand(psi(x + 2)*psi(x))

ans =
psi(x + 1/2)/2 + log(2) + psi(x)/2 +...
1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x)

ans =
psi(x)/x + psi(x)^2 + psi(x)/(x + 1)

Compute the limits for expressions containing the digamma and
polygamma functions:

4-459

psi

syms x
limit(x*psi(x), x, 0)
limit(psi(3, x), x, inf)

ans =
-1

ans =
0

Compute the digamma function for elements of these matrix M and
vector V:

M =sym([0 inf; 1/3 1/2]);
V = sym([1; inf]);
psi(M)
psi(V)

ans =

[Inf, Inf]

[- eulergamma - (3*log(3))/2 - (pi*3^(1/2))/6, - eulergamma - 2*log(2)]

ans =

-eulergamma

Inf

See Also beta | gamma | nchoosek | factorial | mfun | mfunlist

How To • “Special Functions of Applied Mathematics” on page 2-142

4-460

quorem

Purpose Symbolic matrix element-wise quotient and remainder

Syntax [Q,R] = quorem(A,B)

Description [Q,R] = quorem(A,B) for symbolic matrices A and B with integer or
polynomial elements does elementwise division of A by B and returns
quotient Q and remainder R so that A = Q.*B+R. For polynomials,
quorem(A,B,x) uses variable x instead of symvar(A,1) or symvar(B,1).

Examples syms x
p = x^3 - 2*x + 5;
[q, r] = quorem(x^5, p)

q =
x^2 + 2

r =
- 5*x^2 + 4*x - 10

[q, r] = quorem(10^5, subs(p,'10'))

q = 101
r = 515

See Also mod

4-461

rank

Purpose Compute rank of symbolic matrix

Syntax rank(A)

Description rank(A) computes the rank of the symbolic matrix A.

Examples Compute the rank of the following numeric matrix:

B = magic(4);
rank(B)

The result is:

ans =
3

Compute the rank of the following symbolic matrix:

syms a b c d
A = [a b;c d];
rank(A)

The result is:

ans =
2

See Also eig | null | rref | size

4-462

read

Purpose Read MuPAD program file into symbolic engine

Syntax read(symengine,filename)

Description read(symengine,filename) reads the MuPAD program file filename
into the symbolic engine. Reading a program file means finding and
executing it.

Tips • If you do not specify the file extension, read searches for the file
filename.mu.

• If filename is a GNU® zip file with the extension .gz, read
uncompresses it upon reading.

• filename can include full or relative path information. If filename
does not have a path component, read uses the MATLAB function
which to search for the file on the MATLAB path.

• read ignores any MuPAD aliases defined in the program file. If
your program file contains aliases or uses the aliases predefined by
MATLAB, see “Alternatives” on page 4-465.

Input
Arguments

filename

The name of a MuPAD program file that you want to read. This file
must have the extension .mu or .gz.

Examples Suppose you wrote the MuPAD procedure myProc and saved it in the
file myProcedure.mu.

4-463

read

Before you can call this procedure at the MATLAB Command Window,
you must read the file myProcedure.mu into the symbolic engine. To
read a program file into the symbolic engine, use read:

read(symengine, 'myProcedure.mu');

If the file is not on the MATLAB path, specify the full path to this file.
For example, if myProcedure.mu is in the MuPAD folder on disk C, enter:

read(symengine, 'C:/MuPAD/myProcedure.mu');

Now you can access the procedure myProc using evalin or feval. For
example, compute the factorial of 10:

feval(symengine, 'myProc', 10)

ans =

4-464

read

3628800

Alternatives You also can use feval to call the MuPAD read function. The read
function available from the MATLAB Command Window is equivalent
to calling the MuPAD read function with the Plain option. It ignores
any MuPAD aliases defined in the program file:

eng=symengine;
eng.feval('read',' "myProcedure.mu" ', 'Plain');

If your program file contains aliases or uses the aliases predefined by
MATLAB, do not use Plain:

eng=symengine;
eng.feval('read',' "myProcedure.mu" ');

See Also evalin | feval | symengine

How To • “Use Your Own MuPAD Procedures” on page 3-39

• “Conflicts Caused by Syntax Conversions” on page 3-27

4-465

real

Purpose Real part of complex number

Syntax real(z)
real(A)

Description real(z) returns the real part of z.

real(A) returns the real part of each element of A.

Tips • Calling real for a number that is not a symbolic object invokes the
MATLAB real function.

Input
Arguments

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Examples Find the real parts of these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

[real(2 + 3/2*i), real(sin(5*i)), real(2*exp(1 + i))]

ans =
2.0000 0 2.9374

Compute the real parts of the numbers converted to symbolic objects:

[real(sym(2) + 3/2*i), real(4/(sym(1) + 3*i)),
real(sin(sym(5)*i))]

ans =
[2, 2/5, 0]

Compute the real part of this symbolic expression:

4-466

real

real(sym('2*exp(1 + i)'))

ans =
2*cos(1)*exp(1)

In general, real cannot extract the entire real parts from symbolic
expressions containing variables. However, real can rewrite and
sometimes simplify the input expression:

syms a x y
real(a + 2)
real(x + y*i)

ans =
real(a) + 2

ans =
real(x) - imag(y)

If you assign numeric values to these variables or specify that these
variables are real, real can extract the real part of the expression:

syms a
a = 5 + 3*i;
real(a + 2)

ans =
7

syms x y real
real(x + y*i)

ans =
x

Clear the assumption that x and y are real:

4-467

real

syms x y clear

Find the real parts of the elements of matrix A:

A = sym('[-1 + i, sinh(x); exp(10 + 7*i), exp(pi*i)]');
real(A)

ans =
[-1, real(sinh(x))]
[cos(7)*exp(10), -1]

Alternatives You can compute the real part of z via the conjugate: real(z)= (z
+ conj(z))/2.

See Also conj | imag

4-468

rectangularPulse

Purpose Rectangular pulse function

Syntax rectangularPulse(a,b,x)
rectangularPulse(x)

Description rectangularPulse(a,b,x) returns the rectangular pulse function.

rectangularPulse(x) is a shortcut for
rectangularPulse(-1/2,1/2,x).

Tips • If a and b are variables or expressions with variables,
rectangularPulse assumes that a < b. If a and b are numerical
values, such that a > b, rectangularPulse throws an error.

• If a = b, rectangularPulse returns 0.

Input
Arguments

a

Number (including infinities and symbolic numbers), symbolic variable,
or symbolic expression. This argument specifies the rising edge of the
rectangular pulse function.

Default: -1/2

b

Number (including infinities and symbolic numbers), symbolic variable,
or symbolic expression. This argument specifies the falling edge of the
rectangular pulse function.

Default: 1/2

x

Number (including infinities and symbolic numbers), symbolic variable,
or symbolic expression.

4-469

rectangularPulse

Definitions Rectangular Pulse Function

The rectangular pulse function is defined as follows:

If a < x < b, then the rectangular pulse function equals 1. If x = a
or x = b and a <> b, then the rectangular pulse function equals 1/2.
Otherwise, it equals 0.

The rectangular pulse function is also called the rectangle function, box
function, Π-function, or gate function.

Examples Compute the rectangular pulse function for these numbers. Because
these numbers are not symbolic objects, you get floating-point results:

[rectangularPulse(-1, 1, -2)
rectangularPulse(-1, 1, -1)
rectangularPulse(-1, 1, 0)
rectangularPulse(-1, 1, 1)
rectangularPulse(-1, 1, 2)]

ans =
0

0.5000
1.0000
0.5000

0

Compute the rectangular pulse function for the numbers converted
to symbolic objects:

[rectangularPulse(sym(-1), 1, -2)
rectangularPulse(-1, sym(1), -1)
rectangularPulse(-1, 1, sym(0))
rectangularPulse(sym(-1), 1, 1)
rectangularPulse(sym(-1), 1, 2)]

ans =
0

4-470

rectangularPulse

1/2
1

1/2
0

If a < b, the rectangular pulse function for x = a and x = b equals 1/2:

syms a b x
assume(a < b)
rectangularPulse(a, b, a)
rectangularPulse(a, b, b)

ans =
1/2

ans =
1/2

For further computations, remove the assumption:

syms a b clear

For a = b, the rectangular pulse function returns 0:

syms a x
rectangularPulse(a, a, x)

ans =
0

Use rectangularPulse with one input argument as a shortcut for
computing rectangularPulse(-1/2, 1/2, x):

syms x

4-471

rectangularPulse

rectangularPulse(x)

ans =
rectangularPulse(-1/2, 1/2, x)

[rectangularPulse(sym(-1))
rectangularPulse(sym(-1/2))
rectangularPulse(sym(0))
rectangularPulse(sym(1/2))
rectangularPulse(sym(1))]

ans =
0

1/2
1

1/2
0

Plot the rectangular pulse function:

syms x
ezplot(rectangularPulse(x), [-1, 1])

4-472

rectangularPulse

Call rectangularPulse with infinities as its rising and falling edges:

syms x
rectangularPulse(-inf, 0, x)
rectangularPulse(0, inf, x)
rectangularPulse(-inf, inf, x)

ans =
heaviside(-x)

4-473

rectangularPulse

ans =
heaviside(x)

ans =
1

See Also dirac | heaviside | triangularPulse

4-474

reset

Purpose Close MuPAD engine

Syntax reset(symengine)

Description reset(symengine) closes the MuPAD engine associated with the
MATLAB workspace, and resets all its assumptions. Immediately
before or after executing reset(symengine) you should clear all
symbolic objects in the MATLAB workspace.

See Also symengine

4-475

rewrite

Purpose Rewrite expression in new terms

Syntax rewrite(expr,target)
rewrite(A,target)

Description rewrite(expr,target) rewrites the symbolic expression expr in terms
of target. The returned expression is mathematically equivalent to
the original expression.

rewrite(A,target) rewrites each element of A in terms of target.

Tips • rewrite replaces symbolic function calls in expr with the target
function only if such replacement is mathematically valid. Otherwise,
it keeps the original function calls.

Input
Arguments

expr

Symbolic expression.

A

Vector or matrix of symbolic expressions.

target

One of these strings: exp, log, sincos, sin, cos, tan, sqrt, or
heaviside.

Examples Rewrite these trigonometric functions in terms of the exponential
function:

syms x
rewrite(sin(x), 'exp')
rewrite(cos(x), 'exp')
rewrite(tan(x), 'exp')

ans =
(exp(-x*i)*i)/2 - (exp(x*i)*i)/2

4-476

rewrite

ans =
exp(-x*i)/2 + exp(x*i)/2

ans =
-(exp(x*2*i)*i - i)/(exp(x*2*i) + 1)

Rewrite the tangent function in terms of the sine function:

syms x
rewrite(tan(x), 'sin')

ans =
-sin(x)/(2*sin(x/2)^2 - 1)

Rewrite the hyperbolic tangent function in terms of the sine function:

syms x
rewrite(tanh(x), 'sin')

ans =
(sin(x*i)*i)/(2*sin((x*i)/2)^2 - 1)

Rewrite these inverse trigonometric functions in terms of the natural
logarithm:

syms x
rewrite(acos(x), 'log')
rewrite(acot(x), 'log')

ans =
-log(x + (1 - x^2)^(1/2)*i)*i

ans =

4-477

rewrite

(log(1 - i/x)*i)/2 - (log(i/x + 1)*i)/2

Rewrite the rectangular pulse function in terms of the Heaviside step
function:

syms a b x
rewrite(rectangularPulse(a, b, x), 'heaviside')

ans =
heaviside(x - a) - heaviside(x - b)

Rewrite the triangular pulse function in terms of the Heaviside step
function:

syms a b c x
rewrite(triangularPulse(a, b, c, x), 'heaviside')

ans =
(heaviside(x - a)*(a - x))/(a - b) - (heaviside(x -
b)*(a - x))/(a - b) - (heaviside(x - b)*(c - x))/(b -
c) + (heaviside(x - c)*(c - x))/(b - c)

Call rewrite to rewrite each element of this matrix of symbolic
expressions in terms of the exponential function:

syms x
A = [sin(x) cos(x); sinh(x) cosh(x)];
rewrite(A, 'exp')

ans =
[(exp(-x*i)*i)/2 - (exp(x*i)*i)/2, exp(-x*i)/2 + exp(x*i)/2]
[exp(x)/2 - exp(-x)/2, exp(-x)/2
+ exp(x)/2]

4-478

rewrite

Rewrite the cosine function in terms of sine function. Here rewrite
replaces the cosine function using the identity cos(2*x) = 1
sin(x)^2 which is valid for any x:

syms x
rewrite(cos(x),'sin')

ans =
1 - 2*sin(x/2)^2

rewrite does not replace the sine function with either 1 2cos x

or 1 2 cos x because these expressions are only valid for x within
particular intervals:

syms x
rewrite(sin(x),'cos')

ans =
sin(x)

See Also collect | expand | factor | horner | numden | simplify |
simplifyFraction

Concepts • “Simplifications” on page 2-33

4-479

round

Purpose Symbolic matrix element-wise round

Syntax Y = round(X)

Description Y = round(X) rounds the elements of X to the nearest integers. Values
halfway between two integers are rounded away from zero.

Examples x = sym(-5/2);
[fix(x) floor(x) round(x) ceil(x) frac(x)]

ans =
[-2, -3, -3, -2, -1/2]

See Also floor | ceil | fix | frac

4-480

rref

Purpose Compute reduced row echelon form of matrix

Syntax rref(A)

Description rref(A) computes the reduced row echelon form of the symbolic matrix
A. If the elements of a matrix contain free symbolic variables, rref
regards the matrix as nonzero.

Examples Compute the reduced row echelon form of the magic square matrix:

rref(sym(magic(4)))

ans =
[1, 0, 0, 1]
[0, 1, 0, 3]
[0, 0, 1, -3]
[0, 0, 0, 0]

Compute the reduced row echelon form of the following symbolic matrix:

syms a b c
A = [a b c; b c a; a + b, b + c, c + a];
rref(A)

ans =
[1, 0, -(- c^2 + a*b)/(- b^2 + a*c)]
[0, 1, -(- a^2 + b*c)/(- b^2 + a*c)]
[0, 0, 0]

See Also eig | jordan | rank | size

4-481

rsums

Purpose Interactive evaluation of Riemann sums

Syntax rsums(f)
rsums(f,a,b)
rsums(f,[a,b])

Description rsums(f) interactively approximates the integral of f(x) by Riemann
sums for x from 0 to 1. rsums(f) displays a graph of f(x) using 10 terms
(rectangles). You can adjust the number of terms taken in the Riemann
sum by using the slider below the graph. The number of terms available
ranges from 2 to 128. f can be a string or a symbolic expression. The
height of each rectangle is determined by the value of the function in
the middle of each interval.

rsums(f,a,b) and rsums(f,[a,b]) approximates the integral for x
from a to b.

Examples Both rsums('exp(-5*x^2)') and rsums exp(-5*x^2) create the
following plot.

4-482

rsums

4-483

setVar

Purpose Assign variable in MuPAD notebook

Syntax setVar(nb,y)
setVar(nb,'v',y)

Description setVar(nb,y) assigns the symbolic expression y in the MATLAB
workspace to the variable y in the MuPAD notebook nb.

setVar(nb,'v',y) assigns the symbolic expression y in the MATLAB
workspace to the variable v in the MuPAD notebook nb.

Examples mpnb = mupad;
syms x
y = exp(-x);
setVar(mpnb,y)
setVar(mpnb,'z',sin(y))

After executing these statements, the MuPAD engine associated with
the mpnb notebook contains the variables y, with value exp(-x), and z,
with value sin(exp(-x)).

See Also getVar | mupad

4-484

sign

Purpose Sign of real or complex value

Syntax sign(z)

Description sign(z) returns the sign of real or complex value z. The sign of a
complex number z is defined as z/abs(z). If z is a vector or a matrix,
sign(z) returns the sign of each element of z.

Tips • Calling sign for a number that is not a symbolic object invokes the
MATLAB sign function.

Input
Arguments

z - Input
symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function,
vector, or matrix.

Examples Signs of Real Numbers

Find the signs of these symbolic real numbers:

[sign(sym(1/2)), sign(sym(0)), sign(sym(pi) - 4)]

ans =
[1, 0, -1]

Signs of Matrix Elements

Find the signs of the real and complex elements of matrix A:

A = sym([(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]);
sign(A)

ans =
[5^(1/2)*(1/5 + (2*i)/5), -1]
[2^(1/2)*(- 1/2 + i/2), 5^(1/2)*18^(1/2)*(1/30 - i/10)]

4-485

sign

Sign of Symbolic Expression

Find the sign of this expression assuming that the value x is negative:

syms x
assume(x < 0)
sign(5*x^3)

ans =
-1

For further computations, clear the assumption:

syms x clear

Definitions Sign Function

The sign function of any number z is defined via the absolute value of z:

sign z
z
z

Thus, the sign function of a real number z can be defined as follows:

sign z
x
x
x

1 0
0 0
1 0

 if
 if
 if

See Also abs | angle | imag | realsign

4-486

simple

Purpose Search for simplest form of symbolic expression

Note simple will be removed in a future release. Use simplify(S)
instead of simple(S). There is no replacement for [r, how] =
simple(S).

Syntax simple(S)
simple(S,Name,Value)
r = simple(S)
r = simple(S,Name,Value)
[r,how] = simple(S)
[r,how] = simple(S,Name,Value)

Description simple(S) applies different algebraic simplification functions and
displays all resulting forms of S, and then returns the shortest form.

simple(S,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

r = simple(S) tries different algebraic simplification functions without
displaying the results, and then returns the shortest form of S.

r = simple(S,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

[r,how] = simple(S) tries different algebraic simplification functions
without displaying the results, and then returns the shortest form of S
and a string describing the corresponding simplification method.

[r,how] = simple(S,Name,Value) uses additional options specified
by one or more Name,Value pair arguments.

Tips • Simplification of mathematical expression is not a clearly defined
subject. There is no universal idea as to which form of an expression
is simplest. The form of a mathematical expression that is simplest
for one problem might turn out to be complicated or even unsuitable
for another problem.

4-487

simple

• If S is a matrix, the result represents the shortest representation of
the entire matrix, which is not necessarily the shortest representation
of each individual element.

Input
Arguments

S

Symbolic expression or symbolic matrix.

Default: false

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’IgnoreAnalyticConstraints’

If the value is true, apply purely algebraic simplifications to an
expression. With IgnoreAnalyticConstraints, simple can return
simpler results for expressions for which it would return more
complicated results otherwise. Using IgnoreAnalyticConstraints
also can lead to results that are not equivalent to the initial expression.

Default: false

Output
Arguments

r

A symbolic object representing the shortest form of S

how

A string describing the simplification method that gives the shortest
form of S

Algorithms When you use IgnoreAnalyticConstraints, simple applies these
rules:

4-488

simple

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the
following equality is valid for all values of a, b, and c:

(a·b)c = ac·bc.

• log(ab) = b·log(a) for all values of a and b. In particular, the following
equality is valid for all values of a, b, and c:

(ab)c = ab·c.

• If f and g are standard mathematical functions and f(g(x)) = x for
all small positive numbers, f(g(x)) = x is assumed to be valid for all
complex x. In particular:

- log(ex) = x

- asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x

- asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x

- Wk(x·e
x) = x for all values of k

See Also collect | expand | factor | horner | numden | rewrite | simplify

How To • “Simplifications” on page 2-33

4-489

simplify

Purpose Algebraic simplification

Syntax simplify(S)
simplify(S,Name,Value)

Description simplify(S) performs algebraic simplification of S. If S is a symbolic
vector or matrix, this function simplifies each element of S.

simplify(S,Name,Value) performs algebraic simplification of S
using additional options specified by one or more Name,Value pair
arguments.

Tips • Simplification of mathematical expression is not a clearly defined
subject. There is no universal idea as to which form of an expression
is simplest. The form of a mathematical expression that is simplest
for one problem might be complicated or even unsuitable for another
problem.

Input
Arguments

S - Input expression.
symbolic expression | symbolic function | symbolic vector | symbolic
matrix

Input expression, specified as a symbolic expression, function, vector, or
matrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Criterion’ - Simplification criterion
'default' (default) | 'preferReal'

Simplification criterion, specified as the comma-separated pair
consisting of 'Criterion' and one of these strings.

4-490

simplify

'default' Use the default (internal) simplification criteria.

'preferReal' Favor the forms of S containing real values over
the forms containing complex values. If any form of
S contains complex values, the simplifier disfavors
the forms where complex values appear inside
subexpressions. In case of nested subexpressions,
the deeper the complex value appears inside an
expression, the least preference this form of an
expression gets.

’IgnoreAnalyticConstraints’ - Simplification rules
false (default) | true

Simplification rules, specified as the comma-separated pair consisting
of 'IgnoreAnalyticConstraints' and one of these values.

false Use strict simplification rules. simplify always
returns results equivalent to the initial expression.

true Apply purely algebraic simplifications to an
expression. simplify can return simpler
results for expressions for which it would return
more complicated results otherwise. Setting
IgnoreAnalyticConstraints to true can lead
to results that are not equivalent to the initial
expression.

’Seconds’ - Time limit for the simplification process
Inf (default) | positive number

Time limit for the simplification process, specified as the
comma-separated pair consisting of 'Seconds' and a positive value that
denotes the maximal time in seconds.

’Steps’ - Number of simplification steps
1 (default) | positive number

4-491

simplify

Number of simplification steps, specified as the comma-separated pair
consisting of 'Steps' and a positive value that denotes the maximal
number of internal simplification steps. Note that increasing the
number of simplification steps can slow down your computations.

simplify(S,'Steps',n) is equivalent to simplify(S,n), where n is
the number of simplification steps.

Examples Simplify Expressions

Simplify these symbolic expressions:

syms x a b c
simplify(sin(x)^2 + cos(x)^2)
simplify(exp(c*log(sqrt(a+b))))

ans =
1

ans =
(a + b)^(c/2)

Simplify Elements of a Symbolic Matrix

Call simplify for this symbolic matrix. When the input argument is a
vector or matrix, simplify tries to find a simpler form of each element
of the vector or matrix.

syms x
simplify([(x^2 + 5*x + 6)/(x + 2), sin(x)*sin(2*x) + cos(x)*cos(2*x);
(exp(-x*i)*i)/2 - (exp(x*i)*i)/2, sqrt(16)])

ans =
[x + 3, cos(x)]
[sin(x), 4]

Get Simpler Results Using IgnoreAnalyticConstraints

Try to simplify this expression. By default, simplify does not combine
powers and logarithms because combining them is not valid for generic
complex values.

4-492

simplify

syms x
s = (log(x^2 + 2*x + 1) - log(x + 1))*sqrt(x^2);
simplify(s)

ans =
-(log(x + 1) - log((x + 1)^2))*(x^2)^(1/2)

To apply the simplification rules that let the simplify function combine
powers and logarithms, set IgnoreAnalyticConstraints to true:

simplify(s, 'IgnoreAnalyticConstraints', true)

ans =
x*log(x + 1)

Get Simpler Results Using Steps

Simplify this expression:

syms x
f = ((exp(-x*i)*i)/2 - (exp(x*i)*i)/2)/(exp(-x*i)/2 + exp(x*i)/2);
simplify(f)

ans =
-(exp(x*2*i)*i - i)/(exp(x*2*i) + 1)

By default, simplify uses one internal simplification step. You can get
different, often shorter, simplification results by increasing the number
of simplification steps:

simplify(f, 'Steps', 10)
simplify(f, 'Steps', 30)
simplify(f, 'Steps', 50)

ans =
(2*i)/(exp(x*2*i) + 1) - i

ans =
((cos(x) - sin(x)*i)*i)/cos(x) - i

4-493

simplify

ans =
tan(x)

Simplify Favoring Real Numbers

To force simplify favor real values over complex values, set the value
of Criterion to preferReal:

syms x
f = (exp(x + exp(-x*i)/2 - exp(x*i)/2)*i)/2 - (exp(- x - exp(-x*i)/2 + ex
simplify(f, 'Criterion','preferReal', 'Steps', 100)

ans =
cos(sin(x))*sinh(x)*i + sin(sin(x))*cosh(x)

If x is a real value, then this form of expression explicitly shows the
real and imaginary parts.

Although the result returned by simplify with the default setting for
Criterion is shorter, here the complex value is a parameter of the
sine function:

simplify(f, 'Steps', 100)

ans =
sin(x*i + sin(x))

When you set Criterion to preferReal, the simplifier disfavors
expression forms where complex values appear inside subexpressions.
In case of nested subexpressions, the deeper the complex value appears
inside an expression, the least preference this form of an expression
gets.

Simplify Expressions with Complex Arguments in Exponents

Setting Criterion to preferReal helps you avoid complex arguments
in exponents.

Simplify these symbolic expressions:

simplify(sym(i)^i, 'Steps', 100)

4-494

simplify

simplify(sym(i)^(i+1), 'Steps', 100)

ans =
exp(-pi/2)

ans =
(-1)^(1/2 + i/2)

Now, simplify the second expression with the Criterion set to
preferReal:

simplify(sym(i)^(i+1), 'Criterion', 'preferReal',
'Steps', 100)

ans =
exp(-pi/2)*i

Algorithms When you use IgnoreAnalyticConstraints, simplify follows these
rules:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the
following equality is valid for all values of a, b, and c:

(a·b)c = ac·bc.

• log(ab) = b·log(a) for all values of a and b. In particular, the following
equality is valid for all values of a, b, and c:

(ab)c = ab·c.

• If f and g are standard mathematical functions and f(g(x)) = x for
all small positive numbers, f(g(x)) = x is assumed to be valid for all
complex values of x. In particular:

- log(ex) = x

- asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x

- asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x

- Wk(x·e
x) = x for all values of k

4-495

simplify

Alternative
Functionality

Besides the general simplification function (simplify), the toolbox
provides a set of functions for transforming mathematical expressions
to particular forms. For example, you can use particular functions to
expand or factor expressions, collect terms with the same powers, find
a nested (Horner) representation of an expression, or quickly simplify
fractions. If the problem that you want to solve requires a particular
form of an expression, the best approach is to choose the appropriate
simplification function. These simplification functions are often faster
than simplify.

See Also collect | expand | factor | horner | numden | rewrite |
simplifyFraction

Related
Examples

• “Simplifications” on page 2-33

4-496

simplifyFraction

Purpose Symbolic simplification of fractions

Syntax simplifyFraction(expr)
simplifyFraction(expr,Name,Value)

Description simplifyFraction(expr) represents the expression expr as a fraction
where both the numerator and denominator are polynomials whose
greatest common divisor is 1.

simplifyFraction(expr,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Tips • expr can contain irrational subexpressions, such as sin(x),
x^(-1/3), and so on. As a first step, simplifyFraction replaces
these subexpressions with auxiliary variables. Before returning
results, simplifyFraction replaces these variables with the original
subexpressions.

• simplifyFraction ignores algebraic dependencies of irrational
subexpressions.

Input
Arguments

expr

Symbolic expression or matrix (or vector) of symbolic expressions.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Expand’

Expand the numerator and denominator of the resulting fraction

Default: false

4-497

simplifyFraction

Examples Simplify these fractions:

syms x y
simplifyFraction((x^2 - 1)/(x + 1))
simplifyFraction(((y + 1)^3*x)/((x^3 - x*(x
+ 1)*(x - 1))*y))

ans =
x - 1

ans =
(y + 1)^3/y

Use Expand to expand the numerator and denominator in the resulting
fraction:

syms x y
simplifyFraction(((y + 1)^3*x)/((x^3 - x*(x + 1)*(x - 1))*y),...
'Expand', true)

ans =
(y^3 + 3*y^2 + 3*y + 1)/y

Use simplifyFraction to simplify rational subexpressions of irrational
expressions:

syms x
simplifyFraction(((x^2 + 2*x + 1)/(x + 1))^(1/2))

ans =
(x + 1)^(1/2)

Also, use simplifyFraction to simplify rational expressions containing
irrational subexpressions:

simplifyFraction((1 - sin(x)^2)/(1 - sin(x)))

4-498

simplifyFraction

ans =
sin(x) + 1

When you call simplifyFraction for an expression that contains
irrational subexpressions, the function ignores algebraic dependencies
of irrational subexpressions:

simplifyFraction((1 - cos(x)^2)/sin(x))

ans =
-(cos(x)^2 - 1)/sin(x)

Alternatives You also can simplify fractions using the general simplification function
simplify. Note that in terms of performance, simplifyFraction is
significantly more efficient for simplifying fractions than simplify.

See Also collect | expand | factor | horner | numden | rewrite | simplify

How To • “Simplifications” on page 2-33

4-499

simscapeEquation

Purpose Convert symbolic expressions to Simscape language equations

Syntax simscapeEquation(f)
simscapeEquation(LHS,RHS)

Description simscapeEquation(f) converts the symbolic expression f to a Simscape
language equation. This function call converts any derivative with
respect to the variable t to the Simscape notation X.der. Here X is
the time-dependent variable. In the resulting Simscape equation,
the variable time replaces all instances of the variable t except for
derivatives with respect to t.

simscapeEquation(LHS,RHS) returns a Simscape equation LHS ==
RHS.

Tips The equation section of a Simscape component file supports a limited
number of functions. See the list of Supported Functions for more
information. If a symbolic equation contains the functions that
are not available in the equation section of a Simscape component
file, simscapeEquation cannot correctly convert these equations to
Simscape equations. Such expressions do not trigger an error message.
The following types of expressions are prone to invalid conversion:

• Expressions with infinities

• Expressions returned by evalin and feval.

If you perform symbolic computations in the MuPAD Notebook
Interface and want to convert the results to Simscape equations, use
the generate::Simscape function in MuPAD.

Examples Convert the following expressions to Simscape language equations:

syms t
x = sym('x(t)');
y = sym('y(t)');
phi = diff(x)+5*y + sin(t);
simscapeEquation(phi)

4-500

http://www.mathworks.com/help/toolbox/physmod/simscape/lang/equations.html#brtts6o

simscapeEquation

simscapeEquation(diff(y),phi)

The result is:

ans =
phi == sin(time)+y*5.0+x.der;

ans =
y.der == sin(time)+y*5.0+x.der;

See Also matlabFunctionBlock | matlabFunction | ccode | fortran

How To • “Generate Simscape Equations” on page 2-139

4-501

single

Purpose Convert symbolic matrix to single precision

Syntax single(S)

Description single(S) converts the symbolic matrix S to a matrix of single-precision
floating-point numbers. S must not contain any symbolic variables,
except 'eps'.

See Also sym | vpa | double

4-502

sinint

Purpose Sine integral

Syntax Y = sinint(X)

Description Y = sinint(X) evaluates the sine integral function at the elements
of X, a numeric matrix, or a symbolic matrix. The result is a numeric
matrix. The sine integral function is defined by

Si x
t

t
dt

x

()
sin= ∫

0

Examples Evaluate sine integral for the elements of the matrix:

sinint([pi 0;-2.2 exp(3)])

ans =
1.8519 0

-1.6876 1.5522

The statement

sinint(1.2)

returns

ans =
1.1080

The statement

syms x;
diff(sinint(x))

returns

ans =
sin(x)/x

4-503

sinint

See Also cosint

4-504

size

Purpose Symbolic matrix dimensions

Syntax d = size(A)
[m, n] = size(A)
d = size(A, n)

Description Suppose A is an m-by-n symbolic or numeric matrix. The statement
d = size(A) returns a numeric vector with two integer components,
d = [m,n].

The multiple assignment statement [m, n] = size(A) returns the two
integers in two separate variables.

The statement d = size(A, n) returns the length of the dimension
specified by the scalar n. For example, size(A,1) is the number of rows
of A and size(A,2) is the number of columns of A.

Examples The statements

syms a b c d
A = [a b c ; a b d; d c b; c b a];
d = size(A)
r = size(A, 2)

return

d =
4 3

r =
3

See Also length | ndims

4-505

solve

Purpose Equations and systems solver

Syntax S = solve(eqn)
S = solve(eqn,var,Name,Value)

Y = solve(eqns)
Y = solve(eqns,vars,Name,Value)

[y1,...,yN] = solve(eqns)
[y1,...,yN] = solve(eqns,vars,Name,Value)

Description S = solve(eqn) solves the equation eqn for the default variable
determined by symvar. You can specify the independent variable. For
example, solve(x + 1 == 2, x) solves the equation x + 1 = 2 with
respect to the variable x.

S = solve(eqn,var,Name,Value) uses additional options specified by
one or more Name,Value pair arguments. If you do not specify var, the
solver uses the default variable determined by symvar.

Y = solve(eqns) solves the system of equations eqns for the variables
determined by symvar and returns a structure array that contains the
solutions. The number of fields in the structure array corresponds to
the number of independent variables in a system.

Y = solve(eqns,vars,Name,Value) uses additional options specified
by one or more Name,Value pair arguments. If you do not specify vars,
the solver uses the default variables determined by symvar.

[y1,...,yN] = solve(eqns) solves the system of equations eqns for
the variables determined by symvar and assigns the solutions to the
variables y1,...,yN.

4-506

solve

[y1,...,yN] = solve(eqns,vars,Name,Value) uses additional
options specified by one or more Name,Value pair arguments. If you
specify the variables vars, solve returns the results in the same order
in which you specify vars. If you do not specify vars, the solver uses
the default variables determined by symvar.

Tips • If the symbolic solver cannot find a solution of an equation or a
system of equations, the toolbox internally calls the numeric solver
that tries to find a numeric approximation. For polynomial equations
and systems without symbolic parameters, the numeric solver
returns all solutions. For nonpolynomial equations and systems
without symbolic parameters, the solver returns only one solution
(if a solution exists).

• If the solution of an equation or a system of equations contains
parameters, the solver can choose one or more values of the
parameters and return the results corresponding to these values.
For some equations and systems, the solver returns parameterized
solutions without choosing particular values. In this case, the solver
also issues a warning indicating the values of parameters in the
returned solutions.

• To solve differential equations, use the dsolve function.

• When solving a system of equations, always assign the result to
output arguments. Output arguments let you access the values of
the solutions of a system.

• MaxDegree only accepts positive integers smaller than 5 because, in
general, there are no explicit expressions for the roots of polynomials
of degrees higher than 4.

• The output variables y1,...,yN do not specify the variables
for which solve solves equations or systems. If y1,...,yN are
the variables that appear in eqns, that does not guarantee that
solve(eqns) will assign the solutions to y1,...,yN using the
correct order. Thus, for the call [b,a] = solve(eqns), you might
get the solutions for a assigned to b and vice versa.

4-507

solve

To ensure the order of the returned solutions, specify the variables
vars. For example, the call [b,a] = solve(eqns,b,a) assigns the
solutions for a assigned to a and the solutions for b assigned to b.

Input
Arguments

eqn - Equation to solve
symbolic expression | symbolic equation

Equation to solve, specified as a symbolic expression or symbolic
equation. Symbolic equations are defined by the relation operator ==. If
eqn is a symbolic expression (without the right side), the solver assumes
that the right side is 0, and solves the equation eqn == 0.

var - Variable for which you solve an equation
symbolic variable

Variable for which you solve an equation, specified as a symbolic
variable. By default, solve uses the variable determined by symvar.

eqns - System of equations
symbolic expressions | symbolic equations

System of equations, specified as symbolic expressions or symbolic
equations. If any of eqns are symbolic expressions (without the right
side), the solver assumes that the right sides of those equations are 0s.

vars - Variables for which you solve an equation or a system
of equations
symbolic variables

Variables for which you solve an equation or system of equations,
specified as symbolic variables. By default, solve uses the variables
determined by symvar.

The order in which you specify these variables defines the order in
which the solver returns the solutions.

Name-Value Pair Arguments

’IgnoreAnalyticConstraints’ - Simplification rules applied to
expressions and equations

4-508

solve

false (default) | true

Simplification rules applied to expressions and equations, specified as
the comma-separated pair consisting of 'IgnoreAnalyticConstraints'
and one of these values.

false Use strict simplification rules.

true Apply purely algebraic simplifications
to expressions and equations. Setting
IgnoreAnalyticConstraints to true can
give you simple solutions for the equations
for which the direct use of the solver returns
complicated results. In some cases, it also
enables solve to solve equations and systems
that cannot be solved otherwise. Note that setting
IgnoreAnalyticConstraints to true can lead to
wrong or incomplete results.

’IgnoreProperties’ - Flag for returning solutions inconsistent with
the properties of variables
false (default) | true

Flag for returning solutions inconsistent with the properties of
variables, specified as the comma-separated pair consisting of
'IgnoreProperties' and one of these values.

false Do not exclude solutions inconsistent with the
properties of variables.

true Exclude solutions inconsistent with the properties
of variables.

’MaxDegree’ - Maximal degree of polynomial equations for
which the solver uses explicit formulas
3 (default) | positive integer smaller than 5

4-509

solve

Maximal degree of polynomial equations for which the solver uses
explicit formulas, specified as a positive integer smaller than 5. The
solver does not use explicit formulas that involve radicals when solving
polynomial equations of a degree larger than the specified value.

’PrincipalValue’ - Flag for returning only one solution
false (default) | true

Flag for returning only one solution, specified as the comma-separated
pair consisting of 'PrincipalValue' and one of these values.

false Return all solutions.

true Return only one solution. If an equation or a system
of equations does not have a solution, the solver
returns an empty symbolic object.

’Real’ - Flag for returning only real solutions
false (default) | true

Flag for returning only real solutions, specified as the comma-separated
pair consisting of 'Real' and one of these values.

false Return all solutions.

true Return only those solutions for which every
subexpression of the original equation represents
a real number. Also, assume that all symbolic
parameters of an equation represent real numbers.

Output
Arguments

S - Solutions of an equation
symbolic array

Solutions of an equation, returned as a symbolic array. The size of a
symbolic array corresponds to the number of the solutions.

Y - Solutions of a system of equations

4-510

solve

structure array

Solutions of a system of equations, returned as a structure array. The
number of fields in the structure array corresponds to the number of
independent variables in a system.

y1,...,yN - Solutions of a system of equations
symbolic variables

Solutions of a system of equations, returned as symbolic variables. The
number of output variables or symbolic arrays must be equal to the
number of independent variables in a system. If you explicitly specify
independent variables vars, then the solver uses the same order to
return the solutions. If you do not specify vars, the toolbox sorts
independent variables alphabetically, and then assigns the solutions for
these variables to the output variables.

Examples Solve Univariate Equations

If the right side of an equation is 0, you can specify either a symbolic
expression without the left side or an equation with the == operator:

syms x
solve(x^2 - 1)
solve(x^2 + 4*x + 1 == 0)

ans =
1

-1

ans =
3^(1/2) - 2

- 3^(1/2) - 2

If the right side of an equation is not 0, specify the equation using ==:

syms x
solve(x^4 + 1 == 2*x^2 - 1)

4-511

solve

ans =
(1 + i)^(1/2)
(1 - i)^(1/2)

-(1 + i)^(1/2)
-(1 - i)^(1/2)

Solve Multivariate Equations

To avoid ambiguities when solving equations with symbolic parameters,
specify the variable for which you want to solve an equation:

syms a b c x
solve(a*x^2 + b*x + c == 0, a)
solve(a*x^2 + b*x + c == 0, b)

The result is:

ans =
-(c + b*x)/x^2

ans =
-(a*x^2 + c)/x

If you do not specify the variable for which you want to solve the
equation, the toolbox chooses a variable by using the symvar function.
Here, the solver chooses the variable x:

syms a b c x
solve(a*x^2 + b*x + c == 0)

ans =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)

-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

Solve a System of Equations Returning Solutions as a
Structure Array

When solving a system of equations, use one output argument to return
the solutions in the form of a structure array:

4-512

solve

syms x y
S = solve(x + y == 1, x - 11*y == 5)

S =
x: [1x1 sym]
y: [1x1 sym]

To display the solutions, access the elements of the structure array S:

S = [S.x S.y]

S =
[4/3, -1/3]

Solve a System of Equations Assigning the Solutions to
Variables

When solving a system of equations, use multiple output arguments to
assign the solutions directly to output variables:

syms a u v
[solutions_a, solutions_u, solutions_v] =...
solve(a*u^2 + v^2 == 0, u - v == 1, a^2 + 6 == 5*a)

The solver returns a symbolic array of solutions for each independent
variable:

solutions_a =
3
2
2
3

solutions_u =
(3^(1/2)*i)/4 + 1/4
(2^(1/2)*i)/3 + 1/3
1/3 - (2^(1/2)*i)/3
1/4 - (3^(1/2)*i)/4

4-513

solve

solutions_v =
(3^(1/2)*i)/4 - 3/4
(2^(1/2)*i)/3 - 2/3

- (2^(1/2)*i)/3 - 2/3
- (3^(1/2)*i)/4 - 3/4

Entries with the same index form the solutions of a system:

solutions = [solutions_a, solutions_u, solutions_v]

solutions =
[3, (3^(1/2)*i)/4 + 1/4, (3^(1/2)*i)/4 - 3/4]
[2, (2^(1/2)*i)/3 + 1/3, (2^(1/2)*i)/3 - 2/3]
[2, 1/3 - (2^(1/2)*i)/3, - (2^(1/2)*i)/3 - 2/3]
[3, 1/4 - (3^(1/2)*i)/4, - (3^(1/2)*i)/4 - 3/4]

Specify the Order of Returned Solutions

Solve this system of equations and assign the solutions to variables b
and a. To ensure the correct order of the returned solutions, specify the
variables explicitly. The order in which you specify the variables defines
the order in which the solver returns the solutions.

syms a b
[b, a] = solve(a + b == 1, 2*a - b == 4, b, a)

b =
-2/3

a =
5/3

Return Numeric Solutions

Solve the following equation:

syms x
solve(sin(x) == x^2 - 1)

4-514

solve

The symbolic solver cannot find an exact symbolic solution for this
equation, and therefore, it calls the numeric solver. Because the
equation is not polynomial, an attempt to find all possible solutions can
take a long time. The numeric solver does not try to find all numeric
solutions for this equation. Instead, it returns only the first solution
that it finds:

ans =
-0.63673265080528201088799090383828

Plotting the left and the right sides of the equation in one graph shows
that the equation also has a positive solution:

ezplot(sin(x), -2, 2)
hold on
ezplot(x^2 - 1, -2, 2)
hold off

4-515

solve

You can find this solution by calling the MuPAD numeric solver directly
and specifying the interval where this solution can be found. To call
MuPAD commands from the MATLAB Command Window, use the
evalin or feval function:

evalin(symengine, 'numeric::solve(sin(x) =
x^2 - 1, x = 0..2)')

ans =
1.4096240040025962492355939705895

4-516

solve

Return Parameterized Solutions

Solve these trigonometric equations:

syms x
solve(sin(1/sqrt(x)) == 0, x)
solve(sin(1/x) == 0, x)

For the first equation, the solver returns the solution with one
parameter and issues a warning indicating the values of the parameter.
For the second equation, the solver chooses one value of the parameter
and returns the solution corresponding to this value:

Warning: The solutions are parametrized by the symbols:
k = Z_ intersect Dom::Interval([0], infinity)

ans =
1/(pi^2*k^2)

ans =
1/pi

Return Real Solutions

Solve this equation:

syms x
solve(x^5 == 3125, x)

This equation has five solutions:

ans =

5

(5*5^(1/2))/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*5*i)/4 - 5/4

(5*5^(1/2))/4 - (2^(1/2)*(5^(1/2) + 5)^(1/2)*5*i)/4 - 5/4

(2^(1/2)*(5 - 5^(1/2))^(1/2)*5*i)/4 - (5*5^(1/2))/4 - 5/4

- (2^(1/2)*(5 - 5^(1/2))^(1/2)*5*i)/4 - (5*5^(1/2))/4 - 5/4

If you need a solution in real numbers, use Real. The only real solution
of this equation is 5:

4-517

solve

solve(x^5 == 3125, x, 'Real', true)

ans =
5

Return One Solution

Solve this equation:

syms x
solve(sin(x) + cos(2*x) == 1, x)

Instead of returning an infinite set of periodic solutions, the solver picks
these three solutions that it considers to be most practical:

ans =
0

pi/6
(5*pi)/6

To pick only one solution, use PrincipalValue:

solve(sin(x) + cos(2*x) == 1, x, 'PrincipalValue', true)

ans =
0

Apply Simplification Rules That Shorten the Result

Solve this equation. By default, the solver returns a complete, but
rather long and complicated solution:

syms x
solve(x^(7/2) + 1/x^(7/2) == 1, x)

ans =
1/((3^(1/2)*i)/2 + 1/2)^(2/7)
1/(1/2 - (3^(1/2)*i)/2)^(2/7)

exp((pi*4*i)/7)/(3^(1/2)*(i/2) + 1/2)^(2/7)
exp((pi*4*i)/7)/(3^(1/2)*(-i/2) + 1/2)^(2/7)
-exp((pi*3*i)/7)/(3^(1/2)*(i/2) + 1/2)^(2/7)

4-518

solve

-exp((pi*3*i)/7)/(3^(1/2)*(-i/2) + 1/2)^(2/7)

To apply the simplification rules that shorten the result, use
IgnoreAnalyticConstraints:

solve(x^(7/2) + 1/x^(7/2) == 1, x,...
'IgnoreAnalyticConstraints', true)

ans =
1/((3^(1/2)*i)/2 + 1/2)^(2/7)
1/(1/2 - (3^(1/2)*i)/2)^(2/7)

Ignore Assumptions on Variables

The sym and syms functions let you set assumptions for symbolic
variables. For example, declare that the variable x can have only
positive values:

syms x positive

When you solve an equation or a system of equations with respect to
such a variable, the solver verifies the results against the assumptions
and returns only the solutions consistent with the assumptions:

solve(x^2 + 5*x - 6 == 0, x)

ans =
1

To ignore the assumptions and return all solutions, use
IgnoreProperties:

solve(x^2 + 5*x - 6 == 0, x, 'IgnoreProperties', true)

ans =
1

-6

For further computations, clear the assumption that you set for the
variable x:

4-519

solve

syms x clear

Specify Maximal Degree of Polynomials for Which the Solver
Uses Explicit Formulas

When you solve a higher-order polynomial equation, the solver
sometimes uses RootOf to return the results:

syms x a
solve(x^4 + 2*x + a == 0, x)

ans =
RootOf(z^4 + 2*z + a, z)

To get an explicit solution for such equations, try calling the solver with
MaxDegree. The option specifies the maximal degree of polynomials for
which the solver tries to return explicit solutions. The default value is
3. Increasing this value, you can get explicit solutions for higher-order
polynomials. For example, increase the value of MaxDegree to 4 and get
explicit solutions instead of RootOf for the fourth-order polynomial:

s = solve(x^4 + 2*x + a == 0, x, 'MaxDegree', 4);
pretty(s)

+- -+

| #2 - #3 |

| |

| #3 + #1 |

| |

| #3 - #1 |

| |

| - #3 - #2 |

+- -+

where

1/2 1/2 1/2 1/2 1/2 1/2 3 1/2 1/2 1/2

3 (- 3 3 #4 #5 - 4 3 a #4 - 4 3 6 (3 (27 - 16 a) + 9))

4-520

solve

#1 == --

/ 1/2 3 1/2 \1/6

1/4 | 2 3 (27 - 16 a) |

6 (12 a + 9 #5) | ---------------------- + 2 |

\ 9 /

1/2 1/2 1/2 1/2 3 1/2 1/2 1/2 1/2 1/2

3 (4 3 6 (3 (27 - 16 a) + 9) - 4 3 a #4 - 3 3 #4 #5)

#2 == --

/ 1/2 3 1/2 \1/6

1/4 | 2 3 (27 - 16 a) |

6 (12 a + 9 #5) | ---------------------- + 2 |

\ 9 /

1/2

3 #4

#3 == -----------------------------------

/ 1/2 3 1/2 \1/6

| 2 3 (27 - 16 a) |

6 | ---------------------- + 2 |

\ 9 /

1/2

#4 == (4 a + 3 #5)

/ 1/2 3 1/2 \2/3

| 2 3 (27 - 16 a) |

#5 == | ---------------------- + 2 |

\ 9 /

Algorithms When you use IgnoreAnalyticConstraints, the solver applies these
rules to the expressions on both sides of an equation:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the
following equality is valid for all values of a, b, and c:

(a·b)c = ac·bc.

4-521

solve

• log(ab) = b·log(a) for all values of a and b. In particular, the following
equality is valid for all values of a, b, and c:

(ab)c = ab·c.

• If f and g are standard mathematical functions and f(g(x)) = x for
all small positive numbers, f(g(x)) = x is assumed to be valid for all
complex values x. In particular:

- log(ex) = x

- asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x

- asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x

- Wk(x·e
x) = x for all values of k

• The solver can multiply both sides of an equation by any expression
except 0.

• The solutions of polynomial equations must be complete.

See Also dsolve | symvar | vpasolve

Related
Examples

• “Solve an Algebraic Equation” on page 2-83
• “Solve a System of Algebraic Equations” on page 2-85

4-522

sort

Purpose Sort symbolic vectors, matrices, or polynomials

Syntax Y = sort(X)
Y = sort(X,dim)
Y = sort(X,mode)
[Y,I] = sort(X)

Description Y = sort(X) sorts the elements of a symbolic vector or matrix in
ascending order. If X is a vector, sort(X) sorts the elements of X in
numerical or lexicographic order. If X is a matrix, sort(X) sorts each
column of X.

Y = sort(X,dim) sorts the elements of a symbolic vector or
matrix along the dimension of X specified by the integer dim. For
two-dimensional matrices, use 1 to sort element of each column and 2 to
sort element of each row.

Y = sort(X,mode) sorts the elements of a symbolic vector or matrix in
the specified direction, depending on the value of mode. Use ascend to
sort in ascending order, and descend to sort in descending order.

[Y,I] = sort(X) sorts a symbolic vector or a matrix X. This call also
returns the array I that shows the indices that each element of a new
vector or matrix Y had in the original vector or matrix X. If X is an
m-by-n matrix, then each column of I is a permutation vector of the
corresponding column of X, such that

for j = 1:n
Y(:,j) = X(I(:,j),j);

end

If X is a two-dimensional matrix and you sort the elements of each
column, the array I shows the row indices that the elements of Y had
in the original matrix X. If you sort the elements of each row, I shows
the original column indices.

Examples Sort the elements of the following symbolic vector in ascending and
descending order:

4-523

sort

syms a b c d e
sort([7 e 1 c 5 d a b])
sort([7 e 1 c 5 d a b], 'descend')

The results are:

ans =
[1, 5, 7, a, b, c, d, e]

ans =
[e, d, c, b, a, 7, 5, 1]

Sort the elements of the following symbolic matrix:

X = sym(magic(3))

X =
[8, 1, 6]
[3, 5, 7]
[4, 9, 2]

By default, the sort command sorts elements of each column:

sort(X)

ans =
[3, 1, 2]
[4, 5, 6]
[8, 9, 7]

To sort the elements of each row, use set the value of the dim option to 2:

sort(X, 2)

ans =
[1, 6, 8]
[3, 5, 7]
[2, 4, 9]

4-524

sort

Sort the elements of each row of X in descending order:

sort(X, 2, 'descend')

ans =
[8, 6, 1]
[7, 5, 3]
[9, 4, 2]

Sort the matrix X returning the array with indices that each element
of the resulting matrix had in X:

[Y, I] = sort(X)

Y =
[3, 1, 2]
[4, 5, 6]
[8, 9, 7]

I =
2 1 3
3 2 1
1 3 2

See Also sym2poly | coeffs

4-525

sqrtm

Purpose Matrix square root

Syntax X = sqrtm(A)
[X,resnorm] = sqrtm(A)

Description X = sqrtm(A) returns a matrix X, such that X2 = A and the eigenvalues
of X are the square roots of the eigenvalues of A.

[X,resnorm] = sqrtm(A) returns a matrix X and the residual
norm(A-X^2,'fro')/norm(A,'fro').

Tips • Calling sqrtm for a matrix that is not a symbolic object invokes the
MATLAB sqrtm function.

• Matrix A must have a Jordan canonical form. Otherwise, sqrtm
cannot compute the square root of A.

• If A has an eigenvalue 0 of geometric multiplicity higher than 1, the
square root of A does not exist.

Input
Arguments

A

Symbolic matrix.

Output
Arguments

X

Matrix, such that X2 = A.

resnorm

Residual computed as norm(A-X^2,'fro')/norm(A,'fro').

Definitions Square Root of a Matrix

The square root of a matrix A is the matrix X, such that X2 = A and the
eigenvalues of X are the square roots of the eigenvalues of A.

Examples Compute the square root of this matrix. Because these numbers are not
symbolic objects, you get floating-point results.

4-526

sqrtm

A = [2 -2 0; -1 3 0; -1/3 5/3 2];
X = sqrtm(A)

X =
1.3333 -0.6667 0.0000

-0.3333 1.6667 -0.0000
-0.0572 0.5286 1.4142

Now, convert this matrix to a symbolic object, and compute its square
root again:

A = sym([2 -2 0; -1 3 0; -1/3 5/3 2]);
X = sqrtm(A)

X =
[4/3, -2/3, 0]
[-1/3, 5/3, 0]
[(2*2^(1/2))/3 - 1, 1 - 2^(1/2)/3, 2^(1/2)]

Check the correctness of the result:

isAlways(X^2 == A)

ans =
1 1 1
1 1 1
1 1 1

Use the syntax with two output arguments to return the square root of
a matrix and the residual:

A = vpa(sym([0 0; 0 5/3]), 100);
[X,resnorm] = sqrtm(A)

X =
[0, 0]
[0, 1.2909944487358056283930884665941]

4-527

sqrtm

resnorm =
2.9387358770557187699218413430556e-40

See Also cond | eig | expm | jordanlinalg::sqrtMatrix | norm | sqrtm

4-528

subexpr

Purpose Rewrite symbolic expression in terms of common subexpressions

Syntax [Y,SIGMA] = subexpr(X,SIGMA)
[Y,SIGMA] = subexpr(X,'SIGMA')

Description [Y,SIGMA] = subexpr(X,SIGMA) or [Y,SIGMA] =
subexpr(X,'SIGMA') rewrites the symbolic expression X in
terms of its common subexpressions.

Examples The statements

h = solve('a*x^3+b*x^2+c*x+d = 0');
[r,s] = subexpr(h,'s')

return the rewritten expression for t in r in terms of a common
subexpression, which is returned in s:

r =

s^(1/3) - b/(3*a) - (- b^2/(9*a^2) + c/(3*a))/s^(1/3)

(- b^2/(9*a^2) + c/(3*a))/(2*s^(1/3)) - s^(1/3)/2 +...

(3^(1/2)*(s^(1/3) + (- b^2/(9*a^2) + c/(3*a))/s^(1/3))*i)/2 - b/(3*a)

(- b^2/(9*a^2) + c/(3*a))/(2*s^(1/3)) - s^(1/3)/2 -...

(3^(1/2)*(s^(1/3) + (- b^2/(9*a^2) + c/(3*a))/s^(1/3))*i)/2 - b/(3*a)

s =

((d/(2*a) + b^3/(27*a^3) - (b*c)/(6*a^2))^2 +...

(- b^2/(9*a^2) + c/(3*a))^3)^(1/2) - b^3/(27*a^3) -...

d/(2*a) + (b*c)/(6*a^2)

See Also pretty | simple | subs

How To • “Substitute with subexpr” on page 2-41

4-529

subs

Purpose Symbolic substitution

Syntax subs(s,old,new)
subs(s,new)
subs(s)

Description subs(s,old,new) returns a copy of s replacing all occurrences of old
with new, and then evaluating s.

subs(s,new) returns a copy of s replacing all occurrences of the default
variable in s with new, and then evaluating s. The default variable is
defined by symvar.

subs(s) returns a copy of s replacing symbolic variables in s with their
values obtained from the calling function and the MATLAB workspace,
and then evaluating s. Variables with no assigned values remain as
variables.

Compatibility subs(s,old,new,0) will not accept 0 in a future release. Use
subs(s,old,new) instead.

In previous releases, subs(s,old,new,0) prevented switching the
arguments old and new if subs(s,old,new) returned s. The subs
function does not switch old and new anymore.

Tips • subs(s,old,new) does not modify s. To modify s, use s =
subs(s,old,new).

• If old and new are both vectors or cell arrays of the same size, subs
replaces each element of old by the corresponding element of new.

• If old is a scalar, and new is a vector or matrix, then
subs(s,old,new) replaces all instances of old in s with new,
performing all operations elementwise. All constant terms in s are
replaced with the constant times a vector or matrix of all 1s.

4-530

subs

• If s is a univariate polynomial and new is a numeric matrix, use
polyvalm(sym2poly(s), new) to evaluate s in the matrix sense.
All constant terms are replaced with the constant times an identity
matrix.

Input
Arguments

s - Input
symbolic variable | symbolic expression | symbolic equation | symbolic
function | symbolic array | symbolic vector | symbolic matrix

Input specified as a symbolic variable, expression, equation, function,
array, vector, or matrix.

old - Existing element that needs to be replaced
symbolic variable | symbolic expression | string representing variable
or expression | symbolic array | symbolic vector | symbolic matrix |
array of strings | vector of strings | matrix of strings

Existing element that needs to be replaced specified as a symbolic
variable, expression, string, array, vector, or matrix.

new - New element
number | symbolic variable | symbolic expression | string representing
variable or expression | symbolic array | symbolic vector | symbolic
matrix | array of strings | vector of strings | matrix of strings |
structure array

New element specified as a number, variable, expression, string, array,
vector, matrix, or structure array.

Examples Single Substitution

Replace a with 4 in this expression:

syms a b
subs(a + b, a, 4)

ans =
b + 4

4-531

subs

Replace a*b with 5 in this expression:

subs(a*b^2, a*b, 5)

ans =
5*b

Value That Gets Substituted by Default

Substitute the default value in this expression with a. If you do not
specify which variable or expression that you want to replace, subs uses
symvar to find the default variable. For x + y, the default variable is x:

syms x y a
symvar(x + y, 1)

ans =
x

Therefore, subs replaces x with a:

subs(x + y, a)

ans =
a + y

Single Input

Solve this ordinary differential equation:

syms a y(t)
y = dsolve(diff(y) == -a*y)

y =
C2*exp(-a*t)

Now, specify the values of the symbolic parameters a and C2:

a = 980; C2 = 3;

4-532

subs

Although the values a and C2 are now in the MATLAB workspace, y is
not evaluated with the account of these values:

y

y =
C2*exp(-a*t)

To evaluate y taking into account the new values of a and C2, use subs:

subs(y)

ans =
3*exp(-980*t)

Multiple Substitutions

Make multiple substitutions by specifying the old and new values as
vectors:

syms a b
subs(cos(a) + sin(b), [a, b], [sym('alpha'), 2])

ans =
sin(2) + cos(alpha)

You also can use cell arrays for that purpose:

subs(cos(a) + sin(b), {a, b}, {sym('alpha'), 2})

ans =
sin(2) + cos(alpha)

Scalar Expansion

Replace variable a in this expression with the 3-by-3 magic square
matrix. Note that the constant 1 expands to the 3-by-3 matrix with
all its elements equal to 1:

syms a t
subs(exp(a*t) + 1, a, -magic(3))

4-533

subs

ans =
[exp(-8*t) + 1, exp(-t) + 1, exp(-6*t) + 1]
[exp(-3*t) + 1, exp(-5*t) + 1, exp(-7*t) + 1]
[exp(-4*t) + 1, exp(-9*t) + 1, exp(-2*t) + 1]

Multiple Scalar Expansion

Replace variables x and y with these 2-by-2 matrices. When you make
multiple substitutions involving vectors or matrices, use cell arrays
to specify the old and new values:

syms x y
subs(x*y, {x, y}, {[0 1; -1 0], [1 -1; -2 1]})

ans =
[0, -1]
[2, 0]

Note that these substitutions are elementwise:

[0 1; -1 0].*[1 -1; -2 1]

ans =
0 -1
2 0

Substitutions in Equations

Replace sin(x + 1) with a in this equation:

syms x a
subs(sin(x + 1) + 1 == x, sin(x + 1), a)

ans =
a + 1 == x

Substitutions in Functions

Replace x with a in this symbolic function:

syms x y a
syms f(x, y);

4-534

subs

f(x, y) = x + y;
f = subs(f, x, a)

f(x, y) =
a + y

subs replaces the values in the symbolic function formula, but does not
replace input arguments of the function:

formula(f)
argnames(f)

ans =
a + y

ans =
[x, y]

You can replace the arguments of a symbolic function explicitly:

syms x y
f(x, y) = x + y;
f(x, a) = subs(f, x, a);
f

f(x, a) =
a + y

Original Expression

Assign the expression x + y to s:

syms x y
s = x + y;

Replace y in this expression with the value 1. Here, s itself does not
change:

subs(s, y, 1); s

4-535

subs

s =
x + y

To replace the value of s with the new expression, assign the result
returned by subs to s:

s = subs(s, y, 1); s

s =
x + 1

Structure Array

Suppose you want to verify the solutions of this system of equations:

syms x y
eqs = [x^2 + y^2 == 1, x == y];
S = solve(eqs, x, y);
S.x
S.y

ans =
2^(1/2)/2

-2^(1/2)/2

ans =
2^(1/2)/2

-2^(1/2)/2

To verify the correctness of the returned solutions, substitute the
solutions into the original system:

logical(subs(eqs, S))

ans =
1 1
1 1

4-536

subs

See Also double | evalevalAt | simplify | subexpr | subs | subset |
subsex | subsop | vpa

Related
Examples

• “Substitutions in Symbolic Expressions” on page 1-19
• “Substitute with subs” on page 2-43
• “Combine subs and double for Numeric Evaluations” on page 2-47

4-537

svd

Purpose Singular value decomposition of symbolic matrix

Syntax sigma = svd(X)
[U,S,V] = svd(X)
[U,S,V] = svd(X,0)
[U,S,V] = svd(X,'econ')

Description sigma = svd(X) returns a vector sigma containing the singular values
of a symbolic matrix A.

[U,S,V] = svd(X) returns numeric unitary matrices U and V with
the columns containing the singular vectors, and a diagonal matrix
S containing the singular values. The matrices satisfy the condition
A = U*S*V', where V' is the Hermitian transpose (the complex
conjugate of the transpose) of V. The singular vector computation uses
variable-precision arithmetic. svd does not compute symbolic singular
vectors. Therefore, the input matrix X must be a matrix of symbolic
numbers.

[U,S,V] = svd(X,0) produces the "economy size" decomposition. If
X is an m-by-n matrix with m > n, then svd computes only the first
n columns of U. In this case, S is an n-by-n matrix. For m <= n, this
syntax is equivalent to svd(X).

[U,S,V] = svd(X,'econ') also produces the "economy size"
decomposition. If X is an m-by-n matrix with m >= n, then this syntax
is equivalent to svd(X,0). For m < n, svd computes only the first m
columns of V. In this case, S is an m-by-m matrix.

Tips • The second arguments 0 and 'econ' only affect the shape of the
returned matrices. These arguments do not affect the performance of
the computations.

• Calling svd for numeric matrices that are not symbolic objects
invokes the MATLAB svd function.

4-538

svd

Input
Arguments

X - Input matrix
symbolic matrix

Input matrix specified as a symbolic matrix. For syntaxes with one
output argument, the elements of X can be symbolic numbers, variables,
expressions, or functions. For syntaxes with three output arguments,
the elements of X must be numeric.

Output
Arguments

sigma - Singular values
symbolic vector | vector of symbolic numbers

Singular values of a matrix, returned as a symbolic or numeric vector.
If sigma is a numeric vector, then its elements are sorted in descending
order.

U - Singular vectors
matrix of symbolic numbers

Singular vectors, returned as a numeric unitary matrix. Each column of
this matrix is a singular vector.

S - Singular values
matrix of symbolic numbers

Singular values, returned as a diagonal matrix. Diagonal elements of
this matrix appear in descending order.

V - Singular vectors
matrix of symbolic numbers

Singular vectors, returned as a numeric unitary matrix. Each column of
this matrix is a singular vector.

Examples Symbolic Singular Values

Compute the singular values of the symbolic 4-by-4 magic square:

A = sym(magic(4));
sigma = svd(A)

4-539

svd

sigma =
34

8*5^(1/2)
2*5^(1/2)

0

Now, compute singular values of the matrix whose elements are
symbolic expressions:

syms t real
A = [0 1; -1 0];
E = expm(t*A)
sigma = svd(E)

E =
[cos(t), sin(t)]
[-sin(t), cos(t)]

sigma =
(cos(t)^2 + sin(t)^2)^(1/2)
(cos(t)^2 + sin(t)^2)^(1/2)

Simplify the result:

sigma = simplify(sigma)

sigma =
1
1

For further computations, remove the assumption:

syms t clear

Floating-Point Singular Values

Convert the elements of the symbolic 4-by-4 magic square to
floating-point numbers, and compute the singular values of the matrix:

A = sym(magic(4));

4-540

svd

sigma = svd(vpa(A))

sigma =
34.0

17.88854381999831757127338934985
4.4721359549995793928183473374626

0.0000000000000000000042127245515076439434819165724023*i

Singular Values and Singular Vectors

Compute the singular values and singular vectors of the 4-by-4 magic
square:

old = digits(10);
A = sym(magic(4))
[U, S, V] = svd(A)
digits(old);

A =
[16, 2, 3, 13]
[5, 11, 10, 8]
[9, 7, 6, 12]
[4, 14, 15, 1]

U =
[0.5, 0.6708203932, 0.5, -0.2236067977]
[0.5, -0.2236067977, -0.5, -0.6708203932]
[0.5, 0.2236067977, -0.5, 0.6708203932]
[0.5, -0.6708203932, 0.5, 0.2236067977]

S =
[34.0, 0, 0, 0]
[0, 17.88854382, 0, 0]
[0, 0, 4.472135955, 0]
[0, 0, 0, 1.108401846e-15]

V =
[0.5, 0.5, 0.6708203932, 0.2236067977]

4-541

svd

[0.5, -0.5, -0.2236067977, 0.6708203932]
[0.5, -0.5, 0.2236067977, -0.6708203932]
[0.5, 0.5, -0.6708203932, -0.2236067977]

Compute the product of U, S, and the Hermitian transpose of V with
the 10-digit accuracy. The result is the original matrix A with all its
elements converted to floating-point numbers:

vpa(U*S*V',10)

ans =
[16.0, 2.0, 3.0, 13.0]
[5.0, 11.0, 10.0, 8.0]
[9.0, 7.0, 6.0, 12.0]
[4.0, 14.0, 15.0, 1.0]

"Economy Size" Decomposition

Use the second input argument 0 to compute the "economy size"
decomposition of this 2-by-3 matrix:

old = digits(10);
A = sym([1 1;2 2; 2 2]);
[U, S, V] = svd(A, 0)

U =
[0.3333333333, -0.6666666667]
[0.6666666667, 0.6666666667]
[0.6666666667, -0.3333333333]

S =
[4.242640687, 0]
[0, 0]

V =
[0.7071067812, 0.7071067812]
[0.7071067812, -0.7071067812]

4-542

svd

Now, use the second input argument 'econ' to compute the "economy
size" decomposition of matrix B. Here, the 3-by-2 matrix B is the
transpose of A.

B = A';
[U, S, V] = svd(B, 'econ')
digits(old);

U =
[0.7071067812, -0.7071067812]
[0.7071067812, 0.7071067812]

S =
[4.242640687, 0]
[0, 0]

V =
[0.3333333333, 0.6666666667]
[0.6666666667, -0.6666666667]
[0.6666666667, 0.3333333333]

See Also digits | eig | invnumeric::singularvalues |
numeric::singularvectors | numeric::svd | svd |
vpa

Related
Examples

• “Singular Value Decomposition” on page 2-71

4-543

sym

Purpose Create symbolic objects

Syntax var = sym('var')
var = sym('var',set)
sym('var','clear')
Num = sym(Num)
Num = sym(Num,flag)
A = sym('A',dim)
A = sym(A,set)
sym(A,'clear')
f(arg1,...,argN) = sym('f(arg1,...,argN)')

Description var = sym('var') creates the symbolic variable var.

var = sym('var',set) creates the symbolic variable var and states
that var belongs to set.

sym('var','clear') clears assumptions previously set on the symbolic
variable var.

Num = sym(Num) converts a number or a numeric matrix Num to
symbolic form.

Num = sym(Num,flag) converts a number or a numeric matrix Num
to symbolic form. The second argument specifies the technique for
converting floating-point numbers.

A = sym('A',dim) creates a vector or a matrix of symbolic variables.

A = sym(A,set), where A is an existing symbolic vector or matrix, sets
an assumption that all elements of A belong to set. This syntax does
not create A. To create a symbolic vector or a symbolic matrix A, use A =
sym('A',[m n]) or A = sym('A',n).

sym(A,'clear'), where A is an existing symbolic vector or matrix,
clears assumptions previously set on elements of A. This syntax does
not create A. To create a symbolic vector or a symbolic matrix A, use A =
sym('A',[m n]) or A = sym('A',n).

f(arg1,...,argN) = sym('f(arg1,...,argN)') creates the symbolic
function f and specifies that arg1,...,argN are the input arguments

4-544

sym

of f. This syntax does not create symbolic variables arg1,...,argN.
The arguments arg1,...,argN must be existing symbolic variables.

Tips • For compatibility with previous versions, sym('var','unreal') is
equivalent to sym('var','clear').

• Statements like pi = sym('pi') and delta = sym('1/10') create
symbolic numbers that avoid the floating-point approximations
inherent in the values of pi and 1/10. The pi created in this way
temporarily replaces the built-in numeric function with the same
name.

• clear x does not clear the symbolic object of its assumptions, such
as real, positive, or any assumptions set by assume. To remove
assumptions, use one of these options:

- sym('x','clear') removes assumptions from x without affecting
any other symbolic variables.

- reset(symengine) resets the symbolic engine and therefore
removes assumptions on all variables. The variables themselves
remain in the MATLAB workspace.

- clear all clears all objects in the MATLAB workspace and resets
the symbolic engine.

• If the input is a function handle, then the result is the symbolic form
of the body of the function handle.

Input
Arguments

var

String that represents the variable name. It must begin with a letter
and can contain only alphanumeric characters.

set

Either real or positive.

Num

Number, vector, or matrix of numbers.

4-545

sym

flag

One of these strings: r, d, e, or f.

• r stands for “rational.” Floating-point numbers obtained by
evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q,
and 10^q for modest sized integers p and q are converted to the
corresponding symbolic form. This effectively compensates for the
round-off error involved in the original evaluation, but might not
represent the floating-point value precisely. If no simple rational
approximation can be found, an expression of the form p*2^q with
large integers p and q reproduces the floating-point value exactly.
For example, sym(4/3,'r') is '4/3', but sym(1+sqrt(5),'r') is
7286977268806824*2^(-51).

• d stands for “decimal.” The number of digits is taken from the current
setting of digits used by vpa. Fewer than 16 digits loses some
accuracy, while more than 16 digits might not be warranted. For
example, with digits(10), sym(4/3,'d') is 1.333333333, while
with digits digits(20), sym(4/3,'d') is 1.3333333333333332593,
which does not end in a string of 3s, but is an accurate decimal
representation of the floating-point number nearest to 4/3.

• e stands for “estimate error.” The 'r' form is supplemented by a term
involving the variable 'eps', which estimates the difference between
the theoretical rational expression and its actual floating-point value.
For example, sym(3*pi/4,'e') is 3*pi/4*(1+3143276*eps/65).

• f stands for “floating-point.” All values are represented in the form
N*2^e or -N*2^e, where N and e are integers, N >= 0. For example,
sym(1/10,'f') is 3602879701896397/36028797018963968 .

Default: r

A

String that represents the base for generated names of vector or matrix
elements. It must be a valid variable name. (To verify if the name is a
valid variable name, use isvarname.)

4-546

sym

Default: The generated names of elements of a vector use the
form Ak, and the generated names of elements of a matrix use the
form Ai_j. The values of k, i, and j range from 1 to m or 1 to n.
To specify another form for generated names of matrix elements,
use '%d' in the first input. For example, A = sym('A%d%d', [3
3]) generates the 3-by-3 symbolic matrix A with the elements
A11, A12, ..., A33.

dim

Integer or vector of two integers specifying dimensions of A. For
example, if dim is a vector [m n], then the syntax A = sym('A',[m
n]) creates an m-by-n matrix of symbolic variables. If dim is an integer
n, then the syntax A = sym('A',n) creates a square n-by-n matrix of
symbolic variables.

f

Name of a symbolic function. It must begin with a letter and contain
only alphanumeric characters.

arg1,...,argN

Arguments of a symbolic function. Each argument must be an existing
symbolic variable.

Output
Arguments

var

Symbolic variable.

Num

Symbolic number or vector or matrix of symbolic numbers.

A

Vector or matrix of automatically generated symbolic variables.

f

4-547

sym

Symbolic function.

Examples Create the symbolic variables x and y:

x = sym('x');
y = sym('y');

Create the symbolic variables x and y assuming that x is real and y
is positive:

x = sym('x','real');
y = sym('y','positive');

Check the assumptions on x and y using assumptions:

assumptions

ans =
[x in R_, 0 < y]

For further computations, clear the assumptions:

sym('x','clear');
sym('y','clear');
assumptions

ans =
[empty sym]

The sym function lets you choose the conversion technique by specifying
the optional second argument, which can be 'r', 'f', 'd', or 'e'. The
default is 'r'. For example, convert the number 1/3 to a symbolic object:

r = sym(1/3)
f = sym(1/3, 'f')
d = sym(1/3, 'd')

4-548

sym

e = sym(1/3, 'e')

r =
1/3

f =
6004799503160661/18014398509481984

d =
0.3333333333333333148296162562473909929395

e =
1/3 - eps/12

Create the 3-by-4 symbolic matrix A with the auto-generated elements
A1_1, ..., A3_4 :

A = sym('A', [3 4])

A =
[A1_1, A1_2, A1_3, A1_4]
[A2_1, A2_2, A2_3, A2_4]
[A3_1, A3_2, A3_3, A3_4]

Now create the 4-by-4 matrix B with the elements x_1_1, ..., x_4_4:

B = sym('x_%d_%d', [4 4])

B =
[x_1_1, x_1_2, x_1_3, x_1_4]
[x_2_1, x_2_2, x_2_3, x_2_4]
[x_3_1, x_3_2, x_3_3, x_3_4]
[x_4_1, x_4_2, x_4_3, x_4_4]

This syntax does not define elements of a symbolic matrix as separate
symbolic objects. To access an element of a matrix, use parentheses:

4-549

sym

A(2, 3)
B (4, 2)

ans =
A2_3

ans =
x_4_2

You can use symbolic matrices and vectors generated by the sym
function to define other matrices:

A = diag(sym('A',[1 4]))

A =
[A1, 0, 0, 0]
[0, A2, 0, 0]
[0, 0, A3, 0]
[0, 0, 0, A4]

Perform operations on symbolic matrices by using the operators that
you use for numeric matrices. For example, find the determinant and
the trace of the matrix A:

det(A)

ans =
A1*A2*A3*A4

trace(A)

ans =
A1 + A2 + A3 + A4

Use the sym function to set assumptions on all elements of a symbolic
matrix. You cannot create a symbolic matrix and set an assumption on

4-550

sym

all its elements in one sym function call. Use two separate sym function
calls. The first call creates a matrix, and the second call specifies an
assumption:

A = sym('A%d%d', [2 2]);
A = sym(A, 'positive')

A =
[A11, A12]
[A21, A22]

Now, MATLAB assumes that all elements of A are positive:

solve(A(1, 1)^2 - 1, A(1, 1))

ans =
1

To clear all previously set assumptions on elements of a symbolic
matrix, also use the sym function:

A = sym(A, 'clear');
solve(A(1, 1)^2 - 1, A(1, 1))

ans =
1

-1

Create the symbolic function f whose input arguments are symbolic
variables x and y:

x = sym('x');
y = sym('y');
f(x, y) = sym('f(x, y)')

f(x, y) =
f(x, y)

4-551

sym

Alternatively, you can use the assignment operation to create the
symbolic function f:

f(x, y) = x + y

f(x, y) =
x + y

Alternatives • To create several symbolic variables in one function call, use syms.
When using syms, do not enclose variables in quotes and do not use
commas between variable names:

syms var1 var2 var3

syms also lets you create real variables or positive variables. It also
lets you clear assumptions set on a variable.

• assume and assumeAlso provide more flexibility for setting
assumptions on variable.

• When creating a symbolic function, use sym to create arg1,...,argN
as symbolic variables. Then use the assignment operation to create
the symbolic function f, for example:

x = sym('x');
y = sym('y');
f(x, y) = x + y

• syms f(x, y) is equivalent to these commands:

x = sym('x');
y = sym('y');
f(x, y) = sym('f(x, y)')

See Also assume | assumeAlso | assumptions | clear | clear all |
digits | double | eps | reset | symfun | syms | symvar

Concepts • “Create Symbolic Variables and Expressions” on page 1-8
• “Create Symbolic Functions” on page 1-10

4-552

sym

• “Assumptions on Symbolic Objects” on page 1-35
• “Estimate Precision of Numeric to Symbolic Conversions” on page
1-22

4-553

sym2poly

Purpose Symbolic-to-numeric polynomial conversion

Syntax c = sym2poly(s)

Description c = sym2poly(s) returns a row vector containing the numeric
coefficients of a symbolic polynomial. The coefficients are ordered in
descending powers of the polynomial’s independent variable. In other
words, the vector’s first entry contains the coefficient of the polynomial’s
highest term; the second entry, the coefficient of the second highest
term; and so on.

Examples The command

syms x u v
sym2poly(x^3 - 2*x - 5)

returns

ans =
1 0 -2 -5

The command

sym2poly(u^4 - 3 + 5*u^2)

returns

ans =
1 0 5 0 -3

and the command

sym2poly(sin(pi/6)*v + exp(1)*v^2)

returns

ans =
2.7183 0.5000 0

4-554

sym2poly

See Also poly2sym | subs | sym | polyval

4-555

symengine

Purpose Return symbolic engine

Syntax s = symengine

Description s = symengine returns the currently active symbolic engine.

Examples To see which symbolic computation engine is currently active, enter:

s = symengine

The result is:

s =
MuPAD symbolic engine

Now you can use the variable s in function calls that require symbolic
engine:

syms a b c x
p = a*x^2 + b*x + c;
feval(s,'polylib::discrim', p, x)

The result is:

ans =
b^2 - 4*a*c

See Also evalin | feval | read

4-556

symfun

Purpose Create symbolic functions

Syntax f = symfun(formula,inputs)

Description f = symfun(formula,inputs) creates the symbolic function f and
symbolic variables inputs representing its input arguments. The
symbolic expression formula defines the body of the function f.

Input
Arguments

formula

Symbolic expression or vector or matrix of symbolic expressions. This
argument represents the body of f. If it contains other symbolic
variables besides inputs, those variables must already exist in the
MATLAB workspace.

inputs

Array that contains input arguments of f. For each argument, symfun
creates a symbolic variable. Argument names must begin with a letter
and can contain only alphanumeric characters.

Output
Arguments

f

Symbolic function. The name of a symbolic function must begin with a
letter and contain only alphanumeric characters.

Examples Create the symbolic variables x and y. Then use symfun to create the
symbolic function f(x, y) = x + y:

syms x y
f = symfun(x + y, [x y])

f(x, y) =
x + y

4-557

symfun

Create the symbolic variables x and y. Then use symfun to create an
arbitrary symbolic function f(x, y). An arbitrary symbolic function
does not have a mathematical expression assigned to it.

syms x y
f = symfun(sym('f(x, y)'), [x y])

f(x, y) =
f(x, y)

Alternatives Use the assignment operation to simultaneously create a symbolic
function and define its body. The arguments x and y must be symbolic
variables in the MATLAB workspace.

syms x y
f(x, y) = x + y

Use syms to create an arbitrary symbolic function f(x, y). The
following command creates the symbolic function f and the symbolic
variables x and y.

syms f(x, y)

Use sym to create an arbitrary symbolic function f(x, y). The
arguments x and y must be symbolic variables in the MATLAB
workspace.

syms x y
f(x, y) = sym('f(x, y)')

See Also argnames | dsolve | formula | matlabFunction |
odeToVectorField | sym | syms | symvar

Concepts • “Create Symbolic Functions” on page 1-10

4-558

symprod

Purpose Product of series

Syntax symprod(expr)
symprod(expr,v)
symprod(expr,a,b)
symprod(expr,v,a,b)

Description symprod(expr) evaluates the product of a series, where expression
expr defines the terms of a series, with respect to the default symbolic
variable defaultVar determined by symvar. The value of the default
variable changes from 1 to defaultVar.

symprod(expr,v) evaluates the product of a series, where expression
expr defines the terms of a series, with respect to the symbolic variable
v. The value of the variable v changes from 1 to v.

symprod(expr,a,b) evaluates the product of a series, where expression
expr defines the terms of a series, with respect to the default symbolic
variable defaultVar determined by symvar. The value of the default
variable changes from a to b.

symprod(expr,v,a,b) evaluates the product of a series, where
expression expr defines the terms of a series, with respect to the
symbolic variable v. The value of the variable v changes from a to b.

Tips • symprod does not compute indefinite products.

Input
Arguments

expr

Symbolic expression.

v

Symbolic variable representing the product index.

a

Symbolic number, variable, or expression representing the lower bound
of the product index.

4-559

symprod

b

Symbolic number, variable, or expression representing the upper bound
of the product index.

Definitions Definite Product

The definite product of a series is defined as

x x x xi
i a

b

a a b

 1

Indefinite Product

f i xi
i

()

is called the indefinite product of xi over i, if the following identity holds
for all values of i:

f i
f i

xi

1

Examples Evaluate the product of a series for the symbolic expressions k and k^2:

syms k
symprod(k)
symprod((2*k - 1)/k^2)

ans =
factorial(k)

ans =
(1/2^(2*k)*2^(k + 1)*factorial(2*k))/(2*factorial(k)^3)

4-560

symprod

Evaluate the product of a series for these expressions specifying the
limits:

syms k
symprod(1 - 1/k^2, k, 2, Inf)
symprod(k^2/(k^2 - 1), k, 2, Inf)

ans =
1/2

ans =
2

Evaluate the product of a series for this multivariable expression with
respect to k:

syms k x
symprod(exp(k*x)/x, k, 1, 10000)

ans =
exp(50005000*x)/x^10000

See Also int | syms | symsum | symvar

4-561

syms

Purpose Shortcut for creating symbolic variables and functions

Syntax syms var1 ... varN
syms var1 ... varN set
syms var1 ... varN clear
syms f(arg1,...,argN)

Description syms var1 ... varN creates symbolic variables var1 ... varN.

syms var1 ... varN set creates symbolic variables var1 ...
varN and states that these variables belong to set.

syms var1 ... varN clear removes assumptions previously set on
symbolic variables var1 ... varN.

syms f(arg1,...,argN) creates the symbolic function f and symbolic
variables arg1,...,argN representing the input arguments of f.

Tips • For compatibility with previous versions, syms var1 ... varN
unreal is equivalent to syms var1 ... varN clear.

• In functions and scripts, do not use syms to create symbolic variables
with the same names as MATLAB functions. For these names
MATLAB does not create symbolic variables, but keeps the names
assigned to the functions. If you want to create a symbolic variable
with the same name as some MATLAB function inside a function or
a script, use sym. For example:

alpha = sym('alpha')

• clear x does not clear the symbolic object of its assumptions, such
as real, positive, or any assumptions set by assume. To remove
assumptions, use one of these options:

- syms x clear removes assumptions from x without affecting any
other symbolic variables.

- reset(symengine) resets the symbolic engine and therefore
removes assumptions on all variables. The variables themselves
remain in the MATLAB workspace.

4-562

syms

- clear all removes all objects in the MATLAB workspace and
resets the symbolic engine.

Input
Arguments

var1 ... varN

Names of symbolic variables. Each name must begin with a letter and
contain only alphanumeric characters.

set

Either real or positive.

f

Name of a symbolic function. It must begin with a letter and contain
only alphanumeric characters.

arg1,...,argN

Arguments of a symbolic function. For each argument, syms creates
a symbolic variable. Argument names must begin with a letter and
contain only alphanumeric characters.

Examples Create symbolic variables x and y using syms:

syms x y

Create symbolic variables x and y, and assume that they are real:

syms x y real

To see assumptions set on x and y, use assumptions:

assumptions(x)
assumptions(y)

ans =
x in R_

4-563

syms

ans =
y in R_

Clear the assumptions that x and y are real:

syms x y clear
assumptions

ans =
[empty sym]

Create a symbolic function f that accepts two arguments, x and y:

syms f(x, y)

Specify the formula for this function:

f(x, y) = x + 2*y

f(x, y) =
x + 2*y

Compute the function value at the point x = 1 and y = 2:

f(1, 2)

ans =
5

Create symbolic function f and specify its formula by this symbolic
matrix:

syms x
f(x) = [x x^2; x^3 x^4];

Compute the function value at the point x = 2:

4-564

syms

f(2)

ans =
[2, 4]
[8, 16]

Now compute the value of this function for x = [1 2; 3 4]. The result
is a cell array of symbolic matrices:

y = f([1 2; 3 4])

y =
[2x2 sym] [2x2 sym]
[2x2 sym] [2x2 sym]

To access the contents of each cell in a cell array, use braces:

y{1}

ans =
[1, 2]
[3, 4]

y{2}

ans =
[1, 8]
[27, 64]

y{3}

ans =
[1, 4]
[9, 16]

y{4}

ans =
[1, 16]

4-565

syms

[81, 256]

Alternatives • syms is a shortcut for sym. This shortcut lets you create several
symbolic variables in one function call. Alternatively, you can use
sym and create each variable separately:

var1 = sym('var1');
...
varN = sym('varN');

sym also lets you create real variables or positive variables. It also
lets you clear assumptions set on a variable.

• assume and assumeAlso provide more flexibility for setting
assumptions on variable.

• When creating a symbolic function, use syms to create
arg1,...,argN as symbolic variables. Then use the assignment
operation to create the symbolic function f, for example:

syms x y
f(x, y) = x + y

See Also assume | assumeAlso | assumptions | clear all | reset | sym
| symfun | symvar

Concepts • “Create Symbolic Variables and Expressions” on page 1-8
• “Create Symbolic Functions” on page 1-10
• “Assumptions on Symbolic Objects” on page 1-35

4-566

symsum

Purpose Sum of series

Syntax symsum(expr)
symsum(expr,v)
symsum(expr,a,b)
symsum(expr,v,a,b)

Description symsum(expr) evaluates the sum of a series, where expression expr
defines the terms of a series, with respect to the default symbolic
variable defaultVar determined by symvar. The value of the default
variable changes from 0 to defaultVar - 1.

symsum(expr,v) evaluates the sum of a series, where expression expr
defines the terms of a series, with respect to the symbolic variable v.
The value of the variable v changes from 0 to v - 1.

symsum(expr,a,b) evaluates the sum of a series, where expression
expr defines the terms of a series, with respect to the default symbolic
variable defaultVar determined by symvar. The value of the default
variable changes from a to b.

symsum(expr,v,a,b) evaluates the sum of a series, where expression
expr defines the terms of a series, with respect to the symbolic variable
v. The value of the variable v changes from a to b.

Tips • symsum does not compute indefinite sums.

Input
Arguments

expr

Symbolic expression.

v

Symbolic variable representing the summation index.

a

Symbolic number, variable, or expression representing the lower bound
of the summation index.

4-567

symsum

b

Symbolic number, variable, or expression representing the upper bound
of the summation index.

Definitions Definite Sum

The definite sum of series is defined as

x x x xi
i a

b

a a b

 1

Indefinite Sum

f i xi
i

()

is called the indefinite sum of xi over i, if the following identity is true
for all values of i:

f i f i xi 1

Examples Evaluate the sum of a series for the symbolic expressions k and k^2:

syms k
symsum(k)
symsum(1/k^2)

ans =
k^2/2 - k/2

ans =
-psi(1, k)

Evaluate the sum of a series for these expressions specifying the limits:

4-568

symsum

syms k
symsum(k^2, 0, 10)
symsum(1/k^2,1,Inf)

ans =
385

ans =
pi^2/6

Evaluate the sum of a series for this multivariable expression with
respect to k:

syms k x
symsum(x^k/sym('k!'), k, 0, Inf)

ans =
exp(x)

See Also int | symprod | syms | symvar

How To • “Symbolic Summation” on page 2-21

4-569

symvar

Purpose Find symbolic variables in symbolic expression, matrix, or function

Syntax symvar(s)
symvar(s,n)

Description symvar(s) returns a vector containing all the symbolic variables in s in
alphabetical order with uppercase letters preceding lowercase letters.

symvar(s,n) returns a vector containing n symbolic variables in s
alphabetically closest to x. If s is a symbolic function, symvar(s,n)
returns the input arguments of s in front of other free variables in s.

Tips • symvar(s) can return variables in a different order than
symvar(s,n).

• symvar does treat the constants pi, i, and j as variables.

• If there are no symbolic variables in s, symvar returns the empty
vector.

• When performing differentiation, integration, substitution or solving
equations, MATLAB uses the variable returned by symvar(s,1) as a
default variable. For a symbolic expression or matrix, symvar(s,1)
returns the variable closest to x. For a function, symvar(s,1) returns
the first input argument of s.

Input
Arguments

s

Symbolic expression, matrix, or function.

n

Integer.

Examples Find all symbolic variables in the sum:

syms wa wb wx yx ya yb
symvar(wa + wb + wx + ya + yb + yx)

4-570

symvar

ans =
[wa, wb, wx, ya, yb, yx]

Find all symbolic variables in this function:

syms x y a b
f(a, b) = a*x^2/(sin(3*y - b));
symvar(f)

ans =
[a, b, x, y]

Now find the first three symbolic variables in f. For a symbolic function,
symvar with two arguments returns the function inputs in front of
other variables:

symvar(f, 3)

ans =
[a, b, x]

For a symbolic expression or matrix, symvar with two arguments
returns variables sorted by their proximity to x:

symvar(a*x^2/(sin(3*y - b)), 3)

ans =
[x, y, b]

Find the default symbolic variable of these expressions:

syms v z
g = v + z;
symvar(g, 1)

ans =

4-571

symvar

z

syms aaa aab
g = aaa + aab;
symvar(g, 1)

ans =
aaa

syms X1 x2 xa xb
g = X1 + x2 + xa + xb;
symvar(g, 1)

ans =
x2

Algorithms When sorting the symbolic variables by their proximity to x, symvar
uses this algorithm:

1 The variables are sorted by the first letter in their names. The
ordering is x y w z v u ... a X Y W Z V U ... A. The name of a symbolic
variable cannot begin with a number.

2 For all subsequent letters, the ordering is alphabetical,
with all uppercase letters having precedence over lowercase:
0 1 ... 9 A B ... Z a b ... z.

See Also findsym | sym | symfun | syms

Concepts • “Find a Default Symbolic Variable” on page 1-15

4-572

taylor

Purpose Taylor series expansion

Syntax taylor(f)
taylor(f,Name,Value)
taylor(f,v)
taylor(f,v,Name,Value)
taylor(f,v,a)
taylor(f,v,a,Name,Value)

Description taylor(f) computes the Taylor series expansion of f up to the fifth
order. The expansion point is 0.

taylor(f,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

taylor(f,v) computes the Taylor series expansion of f with respect
to v.

taylor(f,v,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

taylor(f,v,a) computes the Taylor series expansion of f with respect
to v around the expansion point a.

taylor(f,v,a,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Tips • If you use both the third argument a and ExpansionPoint to specify
the expansion point, the value specified via ExpansionPoint prevails.

• If v is a vector, then the expansion point a must be a scalar or a
vector of the same length as v. If v is a vector and a is a scalar, then
a is expanded into a vector of the same length as v with all elements
equal to a.

Input
Arguments

f

Symbolic expression.

v

4-573

taylor

Symbolic variable or vector of symbolic variables with respect to which
you want to compute the Taylor series expansion.

Default: Symbolic variable or vector of symbolic variables of f
determined by symvar.

a

Real number (including infinities and symbolic numbers) specifying
the expansion point. For multivariate Taylor series expansions, use a
vector of numbers.

Default: 0

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ExpansionPoint’

Specify the expansion point a. The value a is a scalar or a vector.

Default: If you specify the expansion point as a third argument a
of taylor, then the value of that argument. Otherwise, 0.

’Order’

Specify the truncation order n, where n is a positive integer. taylor
computes the Taylor polynomial approximation with the order n-1. The
truncation order n is the exponent in the O-term: O(vn).

Default: 6

’OrderMode’

4-574

taylor

Specify whether you want to use absolute or relative order when
computing the Taylor polynomial approximation. The value must be
one of these strings: Absolute or Relative. Absolute order is the
truncation order of the computed series. Relative order n means that
the exponents of v in the computed series range from the leading order
m to the highest exponent m + n - 1. Here m + n is the exponent of
v in the O-term: O(vm + n).

Default: Absolute

Definitions Taylor Series Expansion

Taylor series expansion represents an analytic function f(x) as an
infinite sum of terms around the expansion point x = a:

f x f a
f a

x a
f a

x a
f a

m
x a

m
m

m

()
! !

()
!

()

1 2
2

00

Taylor series expansion requires a function to have derivatives up to
an infinite order around the expansion point.

Maclaurin Series Expansion

Taylor series expansion around x = 0 is called Maclaurin series
expansion:

f x f
f

x
f

x
f

m
x

m
m

m

()
! !

()
!

()

0
0

1
0

2
02

0

Examples Compute the Maclaurin series expansions of these functions:

syms x
taylor(exp(x))
taylor(sin(x))
taylor(cos(x))

ans =

4-575

taylor

x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1

ans =
x^5/120 - x^3/6 + x

ans =
x^4/24 - x^2/2 + 1

Compute the Taylor series expansions around x = 1 for these functions.
The default expansion point is 0. To specify a different expansion point,
use ExpansionPoint:

syms x
taylor(log(x), x, 'ExpansionPoint', 1)

ans =
x - (x - 1)^2/2 + (x - 1)^3/3 - (x - 1)^4/4
+ (x - 1)^5/5 - 1

Alternatively, specify the expansion point as the third argument of
taylor:

taylor(acot(x), x, 1)

ans =
pi/4 - x/2 + (x - 1)^2/4 - (x - 1)^3/12 + (x - 1)^5/40 + 1/2

Compute the Maclaurin series expansion for this function. The default
truncation order is 6. Taylor series approximation of this function does
not have a fifth-degree term, so taylor approximates this function with
the fourth-degree polynomial:

syms x
f = sin(x)/x;
t6 = taylor(f)

4-576

taylor

t6 =
x^4/120 - x^2/6 + 1

Use Order to control the truncation order. For example, approximate
the function up to the orders 8 and 10:

t8 = taylor(f, 'Order', 8)
t10 = taylor(f, 'Order', 10)

t8 =
- x^6/5040 + x^4/120 - x^2/6 + 1

t10 =
x^8/362880 - x^6/5040 + x^4/120 - x^2/6 + 1

Plot the original function f and its approximations t6, t8, and t10. Note
how the accuracy of the approximation depends on the truncation order.

plotT6 = ezplot(t6, [-4, 4]);
hold on
set(plotT6,'Color','red')

plotT8 = ezplot(t8, [-4, 4]);
set(plotT8,'Color','magenta')

plotT10 = ezplot(t10, [-4, 4]);
set(plotT10,'Color','cyan')

plotF = ezplot(f, [-4, 4]);
set(plotF,'Color','blue','LineWidth', 2)

legend('approximation of sin(x)/x up to O(x^6)',...
'approximation of sin(x)/x up to O(x^8)',...
'approximation of sin(x)/x up to O(x^1^0)',...
'sin(x)/x',...
'Location', 'South')

title('Taylor Series Expansion')

4-577

taylor

hold off

Compute the Taylor series expansion of this expression. By default,
taylor uses an absolute order, which is the truncation order of the
computed series.

taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5)

ans =
-x^3/3

4-578

taylor

To compute the Taylor series expansion with a relative truncation
order, use OrderMode. For some expressions, a relative truncation order
provides more accurate approximations.

taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5,
'OrderMode', 'Relative')

ans =
- x^7/2520 - x^5/60 - x^3/3

Compute the Maclaurin series expansion of this multivariate function.
If you do not specify the vector of variables, taylor treats f as a
function of one independent variable.

syms x y z
f = sin(x) + cos(y) + exp(z);
taylor(f)

ans =
x^5/120 - x^3/6 + x + cos(y) + exp(z)

Compute the multivariate Maclaurin expansion by specifying the vector
of variables:

syms x y z
f = sin(x) + cos(y) + exp(z);
taylor(f, [x, y, z])

ans =
x^5/120 - x^3/6 + x + y^4/24 - y^2/2 + z^5/120 +
z^4/24 + z^3/6 + z^2/2 + z + 2

Compute the multivariate Taylor expansion by specifying both the
vector of variables and the vector of values defining the expansion point:

syms x y

4-579

taylor

f = y*exp(x - 1) - x*log(y);
taylor(f, [x, y], [1, 1], 'Order', 3)

ans =
x + (x - 1)^2/2 + (y - 1)^2/2

If you specify the expansion point as a scalar a, taylor transforms
that scalar into a vector of the same length as the vector of variables.
All elements of the expansion vector equal a:

taylor(f, [x, y], 1, 'Order', 3)

ans =
x + (x - 1)^2/2 + (y - 1)^2/2

See Also symvar | taylortool

How To • “Taylor Series” on page 2-22

4-580

taylortool

Purpose Taylor series calculator

Syntax taylortool
taylortool('f')

Description taylortool initiates a GUI that graphs a function against the Nth
partial sum of its Taylor series about a base point x = a. The default
function, value of N, base point, and interval of computation for
taylortool are f = x*cos(x), N = 7, a = 0, and [-2*pi,2*pi],
respectively.

taylortool('f') initiates the GUI for the given expression f.

Examples taylortool('sin(tan(x)) - tan(sin(x))')

4-581

taylortool

See Also funtool | rsums

How To • “Taylor Series” on page 2-22

4-582

toeplitz

Purpose Symbolic Toeplitz matrix

Syntax toeplitz(c,r)
toeplitz(r)

Description toeplitz(c,r) generates a nonsymmetric Toeplitz matrix having c as
its first column and r as its first row. If the first elements of c and r
are different, toeplitz issues a warning and uses the first element
of the column.

toeplitz(r) generates a symmetric Toeplitz matrix if r is real. If r
is complex, but its first element is real, then this syntax generates the
Hermitian Toeplitz matrix formed from r. If the first element of r is
not real, then the resulting matrix is Hermitian off the main diagonal,
meaning that Tij = conjugate(Tji) for i ≠ j.

Tips • Calling toeplitz for numeric arguments that are not symbolic
objects invokes the MATLAB toeplitz function.

Input
Arguments

c

Vector specifying the first column of a Toeplitz matrix.

r

Vector specifying the first row of a Toeplitz matrix.

Definitions Toeplitz Matrix

A Toeplitz matrix is a matrix that has constant values along each
descending diagonal from left to right. For example, matrix T is a
symmetric Toeplitz matrix:

4-583

toeplitz

T

t t t
t t t
t t t

t

t

t t t
t t t
t t t

k

k

0 1 2

1 0 1

2 1 0

0 1 2

1 0 1

2 1 0

Examples Generate the Toeplitz matrix from these vectors. Because these vectors
are not symbolic objects, you get floating-point results.

c = [1 2 3 4 5 6];
r = [1 3/2 3 7/2 5];
toeplitz(c,r)

ans =
1.0000 1.5000 3.0000 3.5000 5.0000
2.0000 1.0000 1.5000 3.0000 3.5000
3.0000 2.0000 1.0000 1.5000 3.0000
4.0000 3.0000 2.0000 1.0000 1.5000
5.0000 4.0000 3.0000 2.0000 1.0000
6.0000 5.0000 4.0000 3.0000 2.0000

Now, convert these vectors to a symbolic object, and generate the
Toeplitz matrix:

c = sym([1 2 3 4 5 6]);
r = sym([1 3/2 3 7/2 5]);
toeplitz(c,r)

ans =
[1, 3/2, 3, 7/2, 5]
[2, 1, 3/2, 3, 7/2]
[3, 2, 1, 3/2, 3]
[4, 3, 2, 1, 3/2]
[5, 4, 3, 2, 1]

4-584

toeplitz

[6, 5, 4, 3, 2]

Generate the Toeplitz matrix from this vector:

syms a b c d
T = toeplitz([a b c d])

T =
[a, b, c, d]
[conj(b), a, b, c]
[conj(c), conj(b), a, b]
[conj(d), conj(c), conj(b), a]

If you specify that all elements are real, then the resulting Toeplitz
matrix is symmetric:

syms a b c d real;
T = toeplitz([a b c d])

T =
[a, b, c, d]
[b, a, b, c]
[c, b, a, b]
[d, c, b, a]

For further computations, clear the assumptions:

syms a b c d clear

Generate the Toeplitz matrix from a vector containing complex
numbers:

T = toeplitz(sym([1, 2, i]))

T =
[1, 2, i]

4-585

toeplitz

[2, 1, 2]
[-i, 2, 1]

If the first element of the vector is real, then the resulting Toeplitz
matrix is Hermitian:

logical(T == T')

ans =
1 1 1
1 1 1
1 1 1

If the first element is not real, then the resulting Toeplitz matrix is
Hermitian off the main diagonal:

T = toeplitz(sym([i, 2, 1]))

T =
[i, 2, 1]
[2, i, 2]
[1, 2, i]

logical(T == T')

ans =
0 1 1
1 0 1
1 1 0

Generate a Toeplitz matrix using these vectors to specify the first
column and the first row. Because the first elements of these vectors
are different, toeplitz issues a warning and uses the first element
of the column:

syms a b c
toeplitz([a b c], [1 b/2 a/2])

4-586

toeplitz

Warning: First element of input column does not match
first element of input row.
Column wins diagonal conflict. [linalg::toeplitz]

ans =
[a, b/2, a/2]
[b, a, b/2]
[c, b, a]

See Also linalg::toeplitztoeplitz

4-587

trace

Purpose Enable and disable tracing of MuPAD commands

Syntax trace(symengine,'on')
trace(symengine,'off')

Description trace(symengine,'on') enables tracing of all subsequent MuPAD
commands. Tracing means that for each command Symbolic Math
Toolbox shows all internal calls to MuPAD functions and the results of
these calls.

trace(symengine,'off') disables MuPAD commands tracing.

See Also evalin | feval

4-588

triangularPulse

Purpose Triangular pulse function

Syntax triangularPulse(a,b,c,x)
triangularPulse(a,c,x)
triangularPulse(x)

Description triangularPulse(a,b,c,x) returns the triangular pulse function.

triangularPulse(a,c,x) is a shortcut for triangularPulse(a, (a
+ c)/2, c, x).

triangularPulse(x) is a shortcut for triangularPulse(-1, 0, 1,
x).

Tips • If a, b, and c are variables or expressions with variables,
triangularPulse assumes that a <= b <= c. If a, b, and c are
numerical values that do not satisfy this condition, triangularPulse
throws an error.

• If a = b = c, triangularPulse returns 0.

• If a = b or b = c, the triangular function can be expressed in terms
of the rectangular function.

Input
Arguments

a

Number (including infinities and symbolic numbers), symbolic variable,
or symbolic expression. This argument specifies the rising edge of the
triangular pulse function.

Default: -1

b

Number (including infinities and symbolic numbers), symbolic variable,
or symbolic expression. This argument specifies the peak of the
triangular pulse function.

Default: If you specify a and c, then (a + c)/2. Otherwise, 0.

4-589

triangularPulse

c

Number (including infinities and symbolic numbers), symbolic variable,
or symbolic expression. This argument specifies the falling edge of the
triangular pulse function.

Default: 1

x

Number (including infinities and symbolic numbers), symbolic variable,
or symbolic expression.

Definitions Triangular Pulse Function

If a < x < b, then the triangular pulse function equals (x - a)/(b
- a).

If b < x < c, then the triangular pulse function equals (c - x)/(c
- b).

If x <= a or x >= c, then the triangular pulse function equals 0.

The triangular pulse function is also called the triangle function, hat
function, tent function, or sawtooth function.

Examples Compute the triangular pulse function for these numbers. Because
these numbers are not symbolic objects, you get floating-point results:

[triangularPulse(-2, 0, 2, -3)
triangularPulse(-2, 0, 2, -1/2)
triangularPulse(-2, 0, 2, 0)
triangularPulse(-2, 0, 2, 3/2)
triangularPulse(-2, 0, 2, 3)]

ans =
0

0.7500
1.0000
0.2500

4-590

triangularPulse

0

Compute the triangular pulse function for the numbers converted to
symbolic objects:

[triangularPulse(sym(-2), 0, 2, -3)
triangularPulse(-2, 0, 2, sym(-1/2))
triangularPulse(-2, sym(0), 2, 0)
triangularPulse(-2, 0, 2, sym(3/2))
triangularPulse(-2, 0, sym(2), 3)]

ans =
0

3/4
1

1/4
0

Compute the triangular pulse function for a < x < b:

syms a b c x
assume(a < x < b)
triangularPulse(a, b, c, x)

ans =
(a - x)/(a - b)

For further computations, remove the assumption:

syms a b x clear

Compute the triangular pulse function for b < x < c:

assume(b < x < c)
triangularPulse(a, b, c, x)

4-591

triangularPulse

ans =
-(c - x)/(b - c)

For further computations, remove the assumption:

syms b c x clear

Compute the triangular pulse function for a = b:

syms a b c x
assume(b < c)
triangularPulse(b, b, c, x)

ans =
-((c - x)*rectangularPulse(b, c, x))/(b - c)

Compute the triangular pulse function for c = b:

assume(a < b)
triangularPulse(a, b, b, x)

ans =
((a - x)*rectangularPulse(a, b, x))/(a - b)

For further computations, remove all assumptions on a, b, and c:

syms a b c clear

Use triangularPulse with one input argument as a shortcut for
computing triangularPulse(-1, 0, 1, x):

syms x
triangularPulse(x)

ans =
triangularPulse(-1, 0, 1, x)

4-592

triangularPulse

[triangularPulse(sym(-10))
triangularPulse(sym(-3/4))
triangularPulse(sym(0))
triangularPulse(sym(2/3))
triangularPulse(sym(1))]

ans =
0

1/4
1

1/3
0

Use triangularPulse with three input arguments as a shortcut for
computing triangularPulse(a, (a + c)/2, c, x):

syms a c x
triangularPulse(a, c, x)

ans =
triangularPulse(a, a/2 + c/2, c, x)

[triangularPulse(sym(-10), 10, 3)
triangularPulse(sym(-1/2), -1/4, -2/3)
triangularPulse(sym(2), 4, 3)
triangularPulse(sym(2), 4, 6)
triangularPulse(sym(-1), 4, 0)]

ans =
7/10

0
1
0

2/5

4-593

triangularPulse

Plot the triangular pulse function:

syms x
ezplot(triangularPulse(x), [-2, 2])

Call triangularPulse with infinities as its rising and falling edges:

syms x
triangularPulse(-1, 0, inf, x)
triangularPulse(-inf, 0, 1, x)

4-594

triangularPulse

triangularPulse(-inf, 0, inf, x)

ans =
heaviside(x) + (x + 1)*rectangularPulse(-1, 0, x)

ans =
heaviside(-x) - (x - 1)*rectangularPulse(0, 1, x)

ans =
1

See Also dirac | heaviside | rectangularPulse

4-595

tril

Purpose Return lower triangular part of symbolic matrix

Syntax tril(A)
tril(A,k)

Description tril(A) returns a triangular matrix that retains the lower part of the
matrix A. The upper triangle of the resulting matrix is padded with
zeros.

tril(A,k) returns a matrix that retains the elements of A on and
below the k-th diagonal. The elements above the k-th diagonal equal
to zero. The values k = 0, k > 0, and k < 0 correspond to the main,
superdiagonals, and subdiagonals, respectively.

Examples Display the matrix retaining only the lower triangle of the original
symbolic matrix:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A)

The result is:

ans =
[a, 0, 0]
[1, 2, 0]
[a + 1, b + 2, c + 3]

Display the matrix that retains the elements of the original symbolic
matrix on and below the first superdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, 1)

The result is:

4-596

tril

ans =
[a, b, 0]
[1, 2, 3]
[a + 1, b + 2, c + 3]

Display the matrix that retains the elements of the original symbolic
matrix on and below the first subdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, -1)

The result is:

ans =
[0, 0, 0]
[1, 0, 0]
[a + 1, b + 2, 0]

See Also diag | triu

4-597

triu

Purpose Return upper triangular part of symbolic matrix

Syntax triu(A)
triu(A,k)

Description triu(A) returns a triangular matrix that retains the upper part of the
matrix A. The lower triangle of the resulting matrix is padded with
zeros.

triu(A,k) returns a matrix that retains the elements of A on and
above the k-th diagonal. The elements below the k-th diagonal equal
to zero. The values k = 0, k > 0, and k < 0 correspond to the main,
superdiagonals, and subdiagonals, respectively.

Examples Display the matrix retaining only the upper triangle of the original
symbolic matrix:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A)

The result is:

ans =
[a, b, c]
[0, 2, 3]
[0, 0, c + 3]

Display the matrix that retains the elements of the original symbolic
matrix on and above the first superdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, 1)

The result is:

4-598

triu

ans =
[0, b, c]
[0, 0, 3]
[0, 0, 0]

Display the matrix that retains the elements of the original symbolic
matrix on and above the first subdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, -1)

The result is:

ans =
[a, b, c]
[1, 2, 3]
[0, b + 2, c + 3]

See Also diag | tril

4-599

uint8

Purpose Convert symbolic matrix to unsigned integers

Syntax uint8(S)
uint16(S)
uint32(S)
uint64(S)

Description uint8(S) converts a symbolic matrix S to a matrix of unsigned 8-bit
integers.

uint16(S) converts S to a matrix of unsigned 16-bit integers.

uint32(S) converts S to a matrix of unsigned 32-bit integers.

uint64(S) converts S to a matrix of unsigned 64-bit integers.

Note The output of uint8, uint16, uint32, and uint64 does not have
type symbolic.

The following table summarizes the output of these four functions.

Function Output Range Output Type
Bytes per
Element

Output
Class

uint8 0 to 255 Unsigned 8-bit
integer

1 uint8

uint16 0 to 65,535 Unsigned 16-bit
integer

2 uint16

uint32 0 to 4,294,967,295 Unsigned 32-bit
integer

4 uint32

uint64 0 to 18,446,744,073,709,
551,615

Unsigned 64-bit
integer

8 uint64

See Also sym | vpa | single | double | int8 | int16 | int32 | int64

4-600

vectorPotential

Purpose Vector potential of vector field

Syntax vectorPotential(V,X)
vectorPotential(V)

Description vectorPotential(V,X) computes the vector potential of the vector field
V with respect to the vector X in Cartesian coordinates. The vector field
V and the vector X are both three-dimensional.

vectorPotential(V) returns the vector potential V with respect to a
vector constructed from the first three symbolic variables found in V
by symvar.

Tips • The vector potential exists if and only if the divergence of a vector
field V with respect to X equals 0. If vectorPotential cannot verify
that V has a vector potential, it returns the vector with all three
components equal to NaN.

Input
Arguments

V

Three-dimensional vector of symbolic expressions or functions.

X

Three-dimensional vector with respect to which you compute the vector
potential.

Definitions Vector Potential of a Vector Field

The vector potential of a vector field V is a vector field A, such that:

V A curl A ()

Examples Compute the vector potential of this row vector field with respect to
the vector [x, y, z]:

syms x y z
vectorPotential([x^2*y, -1/2*y^2*x, -x*y*z], [x y z])

4-601

vectorPotential

ans =
-(x*y^2*z)/2

-x^2*y*z
0

Compute the vector potential of this column vector field with respect
to the vector [x, y, z]:

syms x y z
f(x,y,z) = 2*y^3 - 4*x*y;
g(x,y,z) = 2*y^2 - 16*z^2+18;
h(x,y,z) = -32*x^2 - 16*x*y^2;
A = vectorPotential([f; g; h], [x y z])

A(x, y, z) =
(2*z*(3*y^2 - 8*z^2 + 27))/3 + (16*x*y*(y^2 + 6*x))/3

2*y*z*(- y^2 + 2*x)
0

To check whether the vector potential exists for a particular vector
field, compute the divergence of that vector field:

syms x y z
V = [x^2 2*y z];
divergence(V, [x y z])

ans =
2*x + 3

If the divergence is not equal to 0, the vector potential does not exist.
In this case, vectorPotential returns the vector with all three
components equal to NaN:

vectorPotential(V, [x y z])

ans =

4-602

vectorPotential

NaN
NaN
NaN

See Also curl | diff | divergence | gradient | jacobian | hessian |
laplacian | potential

4-603

vpa

Purpose Variable-precision arithmetic

Syntax R = vpa(A)
R = vpa(A,d)

Description R = vpa(A) uses variable-precision arithmetic (VPA) to compute each
element of A to at least d decimal digits of accuracy, where d is the
current setting of digits.

R = vpa(A,d) uses at least d significant (nonzero) digits, instead of the
current setting of digits.

Tips • The toolbox increases the internal precision of calculations by several
digits (guard digits).

• When you apply vpa to a numeric expression, such as 1/3, 2^(-5), or
sin(pi/4), it is evaluated to a double-precision number. Then, vpa is
applied to that double-precision number. For more accurate results,
convert numeric expressions to symbolic expressions. For example,
to approximate exp(1) use vpa(sym(exp(1)).

• If the value d is not an integer, vpa rounds it to the nearest integer.

Input
Arguments

A

Symbolic object, string, or numeric expression.

d

Integer greater than 1 and smaller than 2 129 + .

Output
Arguments

R

Symbolic object representing a floating-point number

Examples Approximate the following expressions with the 25 digits precision:

old = digits(25);
q = vpa('1/2')

4-604

vpa

p = vpa(pi)
w = vpa('(1+sqrt(5))/2')
digits(old)

q =
0.5

p =
3.141592653589793238462643

w =
1.618033988749894848204587

Solve the following equation:

y = solve('x^2 - 2')

y =
2^(1/2)

-2^(1/2)

Approximate the solutions with floating-point numbers:

vpa(y(1))
vpa(y(2))

ans =
1.4142135623730950488016887242097

ans =
-1.4142135623730950488016887242097

Use the vpa function to approximate elements of the following matrices:

A = vpa(hilb(2), 25)
B = vpa(hilb(2), 5)

4-605

vpa

A =
[1.0, 0.5]
[0.5, 0.3333333333333333333333333]

B =
[1.0, 0.5]
[0.5, 0.33333]

The vpa function lets you specify a number of significant (nonzero)
digits that is different from the current digits setting. For example,
compute the ratio 1/3 and the ratio 1/3000 with 4 significant digits:

vpa(1/3, 4)
vpa(1/3000, 4)

ans =
0.3333

ans =
0.0003333

The number of digits that you specify by the vpa function or the digits
function is the minimal number of digits. Internally, the toolbox can use
more digits than you specify. These additional digits are called guard
digits. For example, set the number of digits to 4, and then display the
floating-point approximation of 1/3 using 4 digits:

old = digits;
digits(4)
a = vpa(1/3, 4)

a =
0.3333

4-606

vpa

Now, display a using 20 digits. The result shows that the toolbox
internally used more than 4 digits when computing a. The last digits in
the following result are incorrect because of the round-off error:

vpa(a, 20)
digits(old)

ans =
0.33333333333303016843

Hidden round-off errors can cause unexpected results. For example,
compute the number 1/10 with the default 32 digits accuracy and with
the 10 digits accuracy:

a = vpa(1/10, 32)
b = vpa(1/10, 10)

a =
0.1

b =
0.1

Now, compute the difference a - b:

a - b

ans =
0.000000000000000000086736173798840354720600815844403

The difference is not equal to zero because the toolbox approximates the
number b=0.1 with 32 digits. This approximation produces round-off
errors because the floating point number 0.1 is different from the
rational number 1/10. When you compute the difference a - b, the
toolbox actually computes the difference as follows:

a - vpa(b, 32)

4-607

vpa

ans =
0.000000000000000000086736173798840354720600815844403

Suppose you convert a number to a symbolic object, and then perform
VPA operations on that object. The results can depend on the
conversion technique that you used to convert a floating-point number
to a symbolic object. The sym function lets you choose the conversion
technique by specifying the optional second argument, which can be
’r’, ’f’, ’d’ or ’e’. The default is ’r’. For example, convert the constant
π=3.141592653589793... to a symbolic object:

r = sym(pi)
f = sym(pi, 'f')
d = sym(pi, 'd')
e = sym(pi, 'e')

r =
pi

f =
884279719003555/281474976710656

d =
3.1415926535897931159979634685442

e =
pi - (198*eps)/359

Compute these numbers with the 4 digits VPA precision. Three of the
four numeric approximations give the same result:

vpa(r, 4)
vpa(f, 4)
vpa(d, 4)
vpa(e, 4)

ans =

4-608

vpa

3.142

ans =
3.142

ans =
3.142

ans =
3.142 - 0.5515*eps

Now, increase the VPA precision to 40 digits. The numeric
approximation of 1/10 depends on the technique that you used to
convert 1/10 to the symbolic object:

vpa(r, 40)
vpa(f, 40)
vpa(d, 40)
vpa(e, 40)

ans =
3.141592653589793238462643383279502884197

ans =
3.141592653589793115997963468544185161591

ans =
3.1415926535897931159979634685442

ans =
3.141592653589793238462643383279502884197 -...
0.5515320334261838440111420612813370473538*eps

See Also digits | double

How To • “Variable-Precision Arithmetic” on page 2-50

4-609

vpasolve

Purpose Numeric solver

Syntax S = vpasolve(eqn,var,init_guess)
Y = vpasolve(eqns,vars,init_guess)
[y1,...,yN] = vpasolve(eqns,vars,init_guess)

Description S = vpasolve(eqn,var,init_guess) numerically solves the equation
eqn for the variable var using the starting value or the search range
init_guess.

Y = vpasolve(eqns,vars,init_guess) numerically solves the system
of equations eqns for the variables vars using the starting values or
the search range init_guess. This syntax returns a structure array
that contains the solutions. The number of fields in the structure array
corresponds to the number of independent variables in a system.

[y1,...,yN] = vpasolve(eqns,vars,init_guess) numerically solves
the system of equations eqns for the variables vars using the starting
values or the search range init_guess. This syntax assigns the
solutions to the variables y1,...,yN.

Tips • vpasolve returns all solutions only for polynomial equations. For
non-polynomial equations, there is no general method of finding all
solutions numerically. When you solve a non-polynomial equation
or system numerically, and the solutions exist, vpasolve returns
only one solution.

• When you solve a system of rational equations, the toolbox transforms
it to a polynomial system by multiplying out the denominators.
vpasolve returns all solutions of the resulting polynomial system,
including those that are also roots of these denominators.

• vpasolve ignores assumptions set on variables. You can restrict
the returned results to particular ranges by specifying appropriate
search ranges using the argument init_guess.

• If init_guess specifies a search range [a, b], and the values a, b
are complex numbers, then vpasolve searches for the solutions in
the rectangular search area in the complex plane. Here a specifies

4-610

vpasolve

the bottom-left corner of the rectangular search area, and b specifies
the top-right corner of that area.

• If vars is a vector, then init_guess can be a scalar, a vector of
the same length as vars, or a matrix with two columns and the
number of rows equal to the number of vars. If vars is a vector and
init_guess is a scalar, then init_guess is expanded into a vector
of the same length as vars with all elements equal to init_guess.

• The output variables y1,...,yN do not specify the variables for
which vpasolve solves equations or systems. If y1,...,yN are
the variables that appear in eqns, that does not guarantee that
vpasolve(eqns) will assign the solutions to y1,...,yN using the
correct order. Thus, for the call [a,b] = vpasolve(eqns), you might
get the solutions for a assigned to b and vice versa.

To ensure the order of the returned solutions, specify the variables
vars. For example, the call [b,a] = vpasolve(eqns,b,a) assigns
the solutions for a assigned to a and the solutions for b assigned to b.

Input
Arguments

eqn

Symbolic equation defined by the relation operator == or symbolic
expression. If eqn is a symbolic expression (without the right side),
the solver assumes that the right side is 0, and solves the equation
eqn == 0.

var

Variable for which you solve an equation.

Default: Variable determined by symvar

eqns

Symbolic equations or expressions that need to be solved as a system.
These equations or expressions can be separated by commas or can be
presented as a vector. If an equation is a symbolic expression (without
the right side), the solver assumes that the right side of that equation
is 0.

4-611

vpasolve

vars

Variables for which you solve an equation or a system of equations.
These variables can be separated by commas or can be presented as a
vector.

Default: Variables determined by symvar

init_guess

Number, vector, or matrix with two columns that specifies the initial
guess for the solution.

If init_guess is a number or, in case of multivariate equations, a
vector of numbers, then the numeric solver uses it as a starting point.

If init_guess is a matrix with two columns, then the numeric solver
uses init_guess as a search range. Also, if init_guess is a vector
with two elements, and eqn is univariate, then the numeric solver uses
init_guess as a search range.

Default: vpasolve uses its own internal choices for starting
points and search ranges.

Output
Arguments

S

Symbolic array that contains solutions of an equation when you solve
one equation. The size of a symbolic array corresponds to the number
of the solutions.

Y

Structure array that contains solutions of a system when you solve
a system of equations. The number of fields in the structure array
corresponds to the number of independent variables in a system.

y1,...,yN

Variables to which the solver assigns the solutions of a system of
equations. The number of output variables or symbolic arrays must

4-612

vpasolve

equal the number of independent variables in a system. If you explicitly
specify independent variables vars, then the solver uses the same order
to return the solutions. If you do not specify vars, the toolbox sorts
independent variables alphabetically, and then assigns the solutions for
these variables to the output variables or symbolic arrays.

Examples Solve this polynomial equation numerically. For polynomial equations,
vpasolve returns all solutions.

syms x
vpasolve(4*x^4 + 3*x^3 + 2*x^2 + x + 5 == 0, x)

ans =

- 0.88011377126068169817875190457835 - 0.76331583387715452512978468102263*i

0.50511377126068169817875190457835 + 0.81598965068946312853227067890656*i

0.50511377126068169817875190457835 - 0.81598965068946312853227067890656*i

- 0.88011377126068169817875190457835 + 0.76331583387715452512978468102263*i

Solve this equation numerically. For non-polynomial equations,
vpasolve returns the first solution that it finds.

syms x
vpasolve(sin(x^2) == 1/2, x)

ans =
-226.94447241941511682716953887638

When solving a system of equations, use one output argument to return
the solutions in the form of a structure array:

syms x y
S = vpasolve([x^3 + 2*x == y, y^2 == x], [x, y])

S =
x: [6x1 sym]

4-613

vpasolve

y: [6x1 sym]

To display the solutions, access the elements of the structure array S:

S.x

ans =

0

0.2365742942773341617614871521768

- 0.28124065338711968666197895499453 + 1.2348724236470142074859894531946*i

0.16295350624845260578123537890613 + 1.6151544650555366917886585417926*i

0.16295350624845260578123537890613 - 1.6151544650555366917886585417926*i

- 0.28124065338711968666197895499453 - 1.2348724236470142074859894531946*i

S.y

ans =

0

0.48638903593454300001655725369801

0.70187356885586188630668751791218 + 0.87969719792982402287026727381769*i

- 0.94506808682313338631496614476119 - 0.85451751443904587692179191887616*i

- 0.94506808682313338631496614476119 + 0.85451751443904587692179191887616*i

0.70187356885586188630668751791218 - 0.87969719792982402287026727381769*i

When solving a system of equations, use multiple output arguments to
assign the solutions directly to output variables. To ensure the correct
order of the returned solutions, specify the variables explicitly. The
order in which you specify the variables defines the order in which the
solver returns the solutions.

syms x y
[sol_x, sol_y] = vpasolve([x*sin(10*x) == y^3, y^2
== exp(-2*x/3)], [x, y])

sol_x =
88.90707209659114864849280774681

4-614

vpasolve

sol_y =
0.00000000000013470479710676694388973703681918

Plot the left and right sides of the equation 200*sin(x) = x^3 - 1:

syms x
ezplot(200*sin(x))
hold on
ezplot(x^3 - 1)
title('200*sin(x) = x^3 - 1')

4-615

vpasolve

This equation has three solutions. If you do not specify the initial guess
(zero-approximation), vpasolve returns the first solution that it finds:

vpasolve(200*sin(x) == x^3 - 1, x)

ans =
-0.0050000214585835715725440675982988

To find one of the other solutions, specify the initial point that is close
to that solution:

vpasolve(200*sin(x) == x^3 - 1, x, -4)

4-616

vpasolve

ans =
-3.0009954677086430679926572924945

vpasolve(200*sin(x) == x^3 - 1, x, 3)

ans =
3.0098746383859522384063444361906

Solve this polynomial equation. The numeric solver returns all eight
solutions of this equation:

syms x
vpasolve(x^8 - x^2 == 3, x)

ans =

-1.2052497163799060695888397264341

1.2052497163799060695888397264341

- 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i

- 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164*i

1.0789046020338265308047436284205*i

-1.0789046020338265308047436284205*i

0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i

0.77061431370803029127495426747428 - 0.85915207603993818859321142757164*i

Suppose you need only real solutions of this equation. You cannot use
assumptions on variables because vpasolve ignores them:

assume(x, 'real')
vpasolve(x^8 - x^2 == 3, x)

ans =

-1.2052497163799060695888397264341

1.2052497163799060695888397264341

- 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i

- 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164*i

1.0789046020338265308047436284205*i

-1.0789046020338265308047436284205*i

4-617

vpasolve

0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i

0.77061431370803029127495426747428 - 0.85915207603993818859321142757164*i

Specify the search range to restrict the returned results to particular
ranges. For example, to return only real solutions of this equation,
specify the search interval as [-inf inf]:

vpasolve(x^8 - x^2 == 3, x, [-inf inf])

ans =
-1.2052497163799060695888397264341
1.2052497163799060695888397264341

Now return only nonnegative solutions:

vpasolve(x^8 - x^2 == 3, x, [0 inf])

ans =
1.2052497163799060695888397264341

The search range can contain complex numbers. In this case, vpasolve
uses a rectangular search area in the complex plane:

vpasolve(x^8 - x^2 == 3, x, [-1, 1 + i])

ans =

- 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i

0.77061431370803029127495426747428 + 0.85915207603993818859321142757164*i

Alternatives If possible, solve equations symbolically using solve, and then
approximate the obtained symbolic results numerically using
vpa. Using this approach, you get numeric approximations of all
solutions found by the symbolic solver. Using the symbolic solver and
postprocessing its results requires more time than using the numeric
methods directly. This can significantly decrease performance.

See Also dsolve | equationsToMatrix | fzero | linsolve | solve |
symvar | vpa

4-618

whittakerM

Purpose Whittaker M function

Syntax whittakerM(a,b,z)
whittakerM(a,b,A)

Description whittakerM(a,b,z) returns the value of the Whittaker M function.

whittakerM(a,b,A) returns the value of the Whittaker M function
for each element of A.

Input
Arguments

a

Symbolic number, variable, or expression.

b

Symbolic number, variable, or expression.

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Whittaker M Function

The Whittaker functions Ma,b(z) and Wa,b(z) are linearly independent
solutions of this differential equation:

d w

dz

a
z

b

z
w

2

2

2

2
1
4

1 4
0

The Whittaker M function is defined via the confluent hypergeometric
functions:

4-619

whittakerM

M z e z M b a b za b
z b

, , ,

 2 1 2 1
2

1 2

Examples Solve this second-order differential equation. The solutions are given in
terms of the Whittaker functions.

syms a b w(z)
dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)

ans =
C2*whittakerM(-a,-b,-z) + C3*whittakerW(-a,-b,-z)

Verify that the Whittaker M function is a valid solution of this
differential equation:

syms a b z
simplify(diff(whittakerM(a,b,z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(a,b,z)) == 0

ans =
1

Verify that whittakerM(-a,-b,-z) also is a valid solution of this
differential equation:

syms a b z
simplify(diff(whittakerM(-a,-b,-z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(-a,-b,-z)) == 0

ans =
1

Compute the Whittaker M function for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

4-620

whittakerM

[whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2*i),...
whittakerM(2, 2, 2), whittakerM(3, -0.3, 1/101)]

ans =
0.7303 -9.2744 + 5.4705i

2.6328 0.3681

Compute the Whittaker M function for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, whittakerM
returns unresolved symbolic calls.

[whittakerM(sym(1), 1, 1), whittakerM(-2,
sym(1), 3/2 + 2*i),...
whittakerM(2, 2, sym(2)), whittakerM(sym(3), -0.3, 1/101)]

ans =
[whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2*i),
whittakerM(2, 2, 2), whittakerM(3, -3/10, 1/101)]

For symbolic variables and expressions, whittakerM also returns
unresolved symbolic calls:

syms a b x y
[whittakerM(a, b, x), whittakerM(1, x, x^2),...
whittakerM(2, x, y), whittakerM(3, x + y, x*y)]

ans =
[whittakerM(a, b, x), whittakerM(1, x, x^2),...
whittakerM(2, x, y), whittakerM(3, x + y, x*y)]

The Whittaker M function has special values for some parameters:

whittakerM(sym(-3/2), 1, 1)

ans =
exp(1/2)

4-621

whittakerM

syms a b x
whittakerM(0, b, x)

ans =
4^b*x^(1/2)*gamma(b + 1)*besseli(b, x/2)

whittakerM(a + 1/2, a, x)

ans =
x^(a + 1/2)*exp(-x/2)

whittakerM(a, a - 5/2, x)

ans =
(2*x^(a - 2)*exp(-x/2)*(2*a^2 - 7*a + x^2/2 -...
x*(2*a - 3) + 6))/pochhammer(2*a - 4, 2)

Differentiate the expression involving the Whittaker M function:

syms a b z
diff(whittakerM(a,b,z), z)

ans =
(whittakerM(a + 1, b, z)*(a + b + 1/2))/z -...
(a/z - 1/2)*whittakerM(a, b, z)

Compute the Whittaker M function for the elements of matrix A:

syms x
A= [-1, x^2; 0, x];
whittakerM(-1/2, 0, A)

ans =
[exp(-1/2)*i, exp(x^2/2)*(x^2)^(1/2)]
[0, x^(1/2)*exp(x/2)]

4-622

whittakerM

References Slater, L. J. “Cofluent Hypergeometric Functions.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also hypergeom | whittakerW

How To • “Special Functions of Applied Mathematics” on page 2-142

4-623

whittakerW

Purpose Whittaker W function

Syntax whittakerW(a,b,z)
whittakerW(a,b,A)

Description whittakerW(a,b,z) returns the value of the Whittaker W function.

whittakerW(a,b,A) returns the value of the Whittaker W function
for each element of A.

Input
Arguments

a

Symbolic number, variable, or expression.

b

Symbolic number, variable, or expression.

z

Symbolic number, variable, or expression.

A

Vector or matrix of symbolic numbers, variables, or expressions.

Definitions Whittaker W Function

The Whittaker functions Ma,b(z) and Wa,b(z) are linearly independent
solutions of this differential equation:

d w

dz

a
z

b

z
w

2

2

2

2
1
4

1 4
0

The Whittaker W function is defined via the confluent hypergeometric
functions:

4-624

whittakerW

W z e z U b a b za b
z b

, , ,

 2 1 2 1
2

1 2

Examples Solve this second-order differential equation. The solutions are given in
terms of the Whittaker functions.

syms a b w(z)
dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)

ans =
C2*whittakerM(-a, -b, -z) + C3*whittakerW(-a, -b, -z)

Verify that the Whittaker W function is a valid solution of this
differential equation:

syms a b z
simplify(diff(whittakerW(a, b, z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(a, b, z)) == 0

ans =
1

Verify that whittakerW(-a, -b, -z) also is a valid solution of this
differential equation:

syms a b z
simplify(diff(whittakerW(-a, -b, -z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(-a, -b, -z)) == 0

ans =
1

Compute the Whittaker W function for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

4-625

whittakerW

[whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2*i),...
whittakerW(2, 2, 2), whittakerW(3, -0.3, 1/101)]

ans =
1.1953 -0.0156 - 0.0225i

4.8616 -0.1692

Compute the Whittaker W function for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, whittakerW
returns unresolved symbolic calls.

[whittakerW(sym(1), 1, 1), whittakerW(-2,
sym(1), 3/2 + 2*i),...
whittakerW(2, 2, sym(2)), whittakerW(sym(3), -0.3, 1/101)]

ans =
[whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2*i),
whittakerW(2, 2, 2), whittakerW(3, -3/10, 1/101)]

For symbolic variables and expressions, whittakerW also returns
unresolved symbolic calls:

syms a b x y
[whittakerW(a, b, x), whittakerW(1, x, x^2),...
whittakerW(2, x, y), whittakerW(3, x + y, x*y)]

ans =
[whittakerW(a, b, x), whittakerW(1, x, x^2),
whittakerW(2, x, y), whittakerW(3, x + y, x*y)]

The Whittaker W function has special values for some parameters:

whittakerW(sym(-3/2), 1/2, 0)

ans =
4/(3*pi^(1/2))

4-626

whittakerW

syms a b x
whittakerW(0, b, x)

ans =
(x^(b + 1/2)*besselk(b, x/2))/(pi^(1/2)*x^b)

whittakerW(a, -a + 1/2, x)

ans =
x^(1 - a)*x^(2*a - 1)*exp(-x/2)

whittakerW(a - 1/2, a, x)

ans =
(x^(a + 1/2)*exp(-x/2)*exp(x)*igamma(2*a, x))/x^(2*a)

Differentiate the expression involving the Whittaker W function:

syms a b z
diff(whittakerW(a,b,z), z)

ans =
- (a/z - 1/2)*whittakerW(a, b, z) -...
whittakerW(a + 1, b, z)/z

Compute the Whittaker W function for the elements of matrix A:

syms x
A= [-1, x^2; 0, x];
whittakerW(-1/2, 0, A)

ans =
[-exp(-1/2)*(pi*i + ei(1))*i,
exp(x^2)*exp(-x^2/2)*expint(x^2)*(x^2)^(1/2)]
[0,
x^(1/2)*exp(-x/2)*exp(x)*expint(x)]

4-627

whittakerW

References Slater, L. J. “Cofluent Hypergeometric Functions.” Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also hypergeom | whittakerM

How To • “Special Functions of Applied Mathematics” on page 2-142

4-628

wrightOmega

Purpose Wright omega function

Syntax wrightOmega(x)
wrightOmega(A)

Description wrightOmega(x) computes the Wright omega function of x.

wrightOmega(A) computes the Wright omega function of each element
of A.

Input
Arguments

x

Number, symbolic variable, or symbolic expression.

A

Vector or matrix of numbers, symbolic variables, or symbolic
expressions.

Definitions Wright omega Function

The Wright omega function is defined in terms of the Lambert W
function:

x W ex
x

Im
2

The Wright omega function ω(x) is a solution of the equation Y +
log(Y) = X.

Examples Compute the Wright omega function for these numbers. Because these
numbers are not symbolic objects, you get floating-point results:

wrightOmega(1/2)

ans =
0.7662

wrightOmega(pi)

4-629

wrightOmega

ans =
2.3061

wrightOmega(-1+i*pi)

ans =
-1

Compute the Wright omega function for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, wrightOmega
returns unresolved symbolic calls:

wrightOmega(sym(1/2))

ans =
wrightOmega(1/2)

wrightOmega(sym(pi))

ans =
wrightOmega(pi)

For some exact numbers, wrightOmega has special values:

wrightOmega(-1+i*sym(pi))

ans =
-1

Compute the Wright omega function for x and sin(x) + x*exp(x). For
symbolic variables and expressions, wrightOmega returns unresolved
symbolic calls:

syms x
wrightOmega(x)
wrightOmega(sin(x) + x*exp(x))

4-630

wrightOmega

ans =
wrightOmega(x)

ans =
wrightOmega(sin(x) + x*exp(x))

Now compute the derivatives of these expressions:

diff(wrightOmega(x), x, 2)
diff(wrightOmega(sin(x) + x*exp(x)), x)

ans =
wrightOmega(x)/(wrightOmega(x) + 1)^2 -...
wrightOmega(x)^2/(wrightOmega(x) + 1)^3

ans =
(wrightOmega(sin(x) + x*exp(x))*(cos(x) +...
exp(x) + x*exp(x)))/(wrightOmega(sin(x) + x*exp(x)) + 1)

Compute the Wright omega function for elements of matrix M and vector
V:

M =[0 pi; 1/3 -pi];
V = sym([0; -1+i*pi]);
wrightOmega(M)
wrightOmega(V)

ans =
0.5671 2.3061
0.6959 0.0415

ans =
lambertw(0, 1)

-1

References Corless, R. M. and D. J. Jeffrey. “The Wright omega Function.” Artificial
Intelligence, Automated Reasoning, and Symbolic Computation (J.

4-631

wrightOmega

Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, eds.).
Berlin: Springer-Verlag, 2002, pp. 76-89.

See Also lambertW | log

How To • “Special Functions of Applied Mathematics” on page 2-142

4-632

xor

Purpose Logical XOR for symbolic expressions

Syntax xor(A,B)

Description xor(A,B) represents the logical exclusive disjunction. xor(A,B) is true
when either A or B are true. If both A and B are true or false, xor(A,B)
is false.

Tips • If you call simplify for a logical expression containing symbolic
subexpressions, you can get symbolic values TRUE or FALSE. These
values are not the same as logical 1 (true) and logical 0 (false). To
convert symbolic TRUE or FALSE to logical values, use logical.

• assume and assumeAlso do not accept assumptions that contain xor.

Input
Arguments

A

Symbolic equation, inequality, or logical expression that contains
symbolic subexpressions.

B

Symbolic equation, inequality, or logical expression that contains
symbolic subexpressions.

Examples Combine two symbolic inequalities into the logical expression using xor:

syms x
range = xor(x > -10, x < 10);

Replace variable x with these numeric values. If you replace x with 11,
then inequality x > -10 is valid and x < 10 is invalid. If you replace x
with 0, both inequalities are valid. Note that subs does not evaluate
these inequalities to logical 1 or 0.

x1 = subs(range, x, 11)
x2 = subs(range, x, 0)

4-633

xor

x1 =
-10 < 11 xor 11 < 10

x2 =
-10 < 0 xor 0 < 10

To evaluate these inequalities to logical 1 or 0, use logical or
isAlways. If only one inequality is valid, the expression with xor
evaluates to logical 1. If both inequalities are valid, the expression with
xor evaluates to logical 0.

logical(x1)
isAlways(x2)

ans =
1

ans =
0

Note that simplify does not simplify these logical expressions to logical
1 or 0. Instead, they return symbolic values TRUE or FALSE.

s1 = simplify(x1)
s2 = simplify(x2)

s1 =
TRUE

s2 =
FALSE

Convert symbolic TRUE or FALSE to logical values using logical:

logical(s1)
logical(s2)

ans =
1

4-634

xor

ans =
0

See Also all | and | any | isAlways | logical | not | or

4-635

zeta

Purpose Riemann zeta function

Syntax Y = zeta(X)
Y = zeta(n,X)

Description Y = zeta(X) evaluates the zeta function at the elements of X, a numeric
matrix, or a symbolic matrix. The zeta function is defined by

 ()w
kw

k

=
=

∞

∑ 1

1

Y = zeta(n,X) returns the n-th derivative of zeta(X).

Examples Compute the Riemann zeta function for the number:

zeta(1.5)

ans =
2.6124

Compute the Riemann zeta function for the matrix:

zeta(1.2:0.1:2.1)

ans =
Columns 1 through 6

5.5916 3.9319 3.1055 2.6124 2.2858 2.0543

Columns 7 through 10

1.8822 1.7497 1.6449 1.5602

Compute the Riemann zeta function for the matrix of the symbolic
expressions:

syms x y

4-636

zeta

zeta([x 2; 4 x + y])

ans =
[zeta(x), pi^2/6]
[pi^4/90, zeta(x + y)]

Differentiate the Riemann zeta function:

diff(zeta(x), x, 3)

ans =
zeta(3, x)

4-637

ztrans

Purpose Z-transform

Syntax ztrans(f,trans_index,eval_point)

Description ztrans(f,trans_index,eval_point) computes the Z-transform of f
with respect to the transformation index trans_index at the point
eval_point.

Tips • If you call ztrans with two arguments, it assumes that the second
argument is the evaluation point eval_point.

• If f is a matrix, ztrans applies the Z-transform to all components
of the matrix.

• To compute the inverse Z-transform, use iztrans.

Input
Arguments

f

Symbolic expression, symbolic function, or vector or matrix of symbolic
expressions or functions.

trans_index

Symbolic variable representing the transformation index. This variable
is often called the “discrete time variable”.

Default: The variable n. If f does not contain n, then the default
variable is determined by symvar.

eval_point

Symbolic variable or expression representing the evaluation point. This
variable is often called the “complex frequency variable”.

Default: The variable z. If z is the transformation index of f,
then the default evaluation point is the variable w.

4-638

ztrans

Definitions Z-Transform

The Z-transform of the expression f = f(n) is defined as follows:

F z
f n

zn
n

0

.

Examples Compute the Z-transform of this expression with respect to the
transformation index k at the evaluation point x:

syms k x
f = sin(k);
ztrans(f, k, x)

ans =
(x*sin(1))/(x^2 - 2*cos(1)*x + 1)

Compute the Z-transform of this expression calling the ztrans function
with one argument. If you do not specify the transformation index,
ztrans uses the variable n:

syms a n x
f = a^n;
ztrans(f, x)

ans =
-x/(a - x)

If you also do not specify the evaluation point, ztrans uses the variable
z:

ztrans(f)

ans =
-z/(a - z)

4-639

ztrans

Compute the following Z-transforms that involve the Heaviside function
and the binomial coefficient:

syms n z
ztrans(heaviside(n - 3), n, z)

ans =
(1/(z - 1) + 1/2)/z^3

ztrans(nchoosek(n, 2)*heaviside(5 - n), n, z)

ans =
z/(z - 1)^3 + 5/z^5 + (6*z - z^6/(z - 1)^3
+ 3*z^2 + z^3)/z^5

If ztrans cannot find an explicit representation of the transform, it
returns an unevaluated call:

syms f(n) z
F = ztrans(f, n, z)

F(z) =
ztrans(f(n), n, z)

iztrans returns the original expression:

iztrans(F, z, n)

ans(n) =
f(n)

See Also fourier | ifourier | ilaplace | iztrans | laplace

Concepts • “Compute Z-Transforms and Inverse Z-Transforms” on page 2-108

4-640

Index

IndexSymbols and Numerics
' 4-29
* 4-28
+ 4-28
- 4-28
. 4-29
/ 4-29
^ 4-29
.' 4-29
.* 4-28
./ 4-29
.^ 4-29
\\ 2-60 4-28

A
Airy differential equation 2-90
Airy function 2-90
arithmetic operations 4-28

left division
array 4-29
matrix 4-28

matrix addition 4-28
matrix subtraction 4-28
multiplication

array 4-28
matrix 4-28

power
array 4-29
matrix 4-29

right division
array 4-29
matrix 4-29

transpose
array 4-29
matrix 4-29

assigning variables to MuPAD notebooks 4-484

B
backslash operator 2-60
beam equation 2-96
Bernoulli numbers 2-142 4-389
Bernoulli polynomials 2-142 4-389
Bessel functions 2-142 4-389

differentiating 2-6
integrating 2-16

besselj 2-6
besselk 2-91
beta function 2-142 4-389
binomial coefficients 2-142 4-389

C
calculations

propagating 3-7
ccode 4-80
ceil 4-82
characteristic polynomial

poly function 4-448
relation to eigenvalues 2-64
Rosser matrix 2-66

charpoly 2-64
Chebyshev polynomial 2-147 4-394
circuit analysis

using the Laplace transform for 2-101
circulant matrix

eigenvalues 2-43
symbolic 1-12

clear all 4-101
clearing assumptions

symbolic engine 1-36
clearing variables

symbolic engine 1-36
coeffs 4-102
collect 2-34 4-105
colspace 4-106
column space 2-61
complementary error function 2-142 4-202

Index-1

Index

complex conjugate 4-112
complex number

imaginary part of 4-311
real part of 4-466

complex symbolic variables 1-4
compose 4-107
conj 4-112
converting numeric matrices to symbolic

form 1-14
cosine integral function 4-113
cosine integrals 2-142 4-389
cosint 4-113

D
Dawson’s integral 2-142 4-389
decimal symbolic expressions 1-23
default symbolic variable 1-15
definite integration 2-15
det 4-117
diag 4-118
diff 2-3 4-121
difference equations

solving 2-108
differentiation 2-3
diffraction 2-148
digamma function 2-142 4-457
digits 1-24 4-123
dirac 4-128
Dirac Delta function 2-96
discrim 2-80
doc 4-131
double

converting to floating-point with 2-53
dsolve 4-134

examples 2-88

E
eig 2-64 4-149

eigenvalue trajectories 2-73
eigenvalues 4-149

computing 2-64
sensitive 2-74

eigenvector 2-64
elliptic integrals 2-142 4-389
environment 1-3
eps 1-23
error function 2-142 4-198
Euler polynomials 2-142 4-389
expand 4-220

examples 2-34
expm 4-229
exponential integrals 2-142 4-389
ezcontour 4-230

F
factor 4-259

example 2-36
fix 4-270
floating-point arithmetic 2-50

IEEE 2-51
floating-point symbolic expressions 1-22
floor 4-271
format 2-51
fortran 4-273
Fourier transform 2-94
frac 4-279
Fresnel integral 2-142 4-389
function calculator 4-280
functional composition 4-107
funtool 4-280

G
Gamma function 2-142 4-285
Gegenbauer polynomial 2-147 4-394
generalized hypergeometric function 2-143 4-389
getting variables from MuPAD notebooks 4-290

Index-2

Index

getVar 4-290
Givens transformation 2-67

with basic operations 2-56
golden ratio 1-9
gradient 4-291

H
handle

MuPAD 3-3
harmonic function 2-143 4-389
heaviside 4-297
Heaviside function 2-99
Hermite polynomial 2-147 4-394
hessian matrix 4-298
Hilbert matrix

converting to symbolic 1-14
with basic operations 2-59

horner 4-300
example 2-36

hyperbolic cosine integral 2-143 4-389
hyperbolic sine integral 2-143 4-389

I
IEEE floating-point arithmetic 2-51
imag 4-311
incomplete Gamma function 2-142 4-389
int 2-13 4-314

example 2-13
int16 4-322
int32 4-322
int64 4-322
int8 4-322
integral transforms

Fourier 2-94
Laplace 2-101
z-transform 2-108

integration 2-13
definite 2-15

with real constants 2-16
interface 1-3
inv 4-323
inverse complementary error function 4-206
inverse error function 4-214

J
Jacobi polynomial 2-147 4-394
jacobian 2-7 4-335
Jacobian matrix 2-7 4-335
jordan 4-336

example 2-69
Jordan canonical form 2-69 4-336

L
Laguerre polynomial 2-147 4-394
Lambert W function 2-143 4-338
lambertw 4-338
Laplace transform 2-101
latex 4-346
left division

array 4-29
matrix 4-28

Legendre polynomial 2-147 4-394
limit 4-351
limits 2-10

undefined 2-12
log Gamma function 2-142 4-389
log10 4-358
log2 4-359
logarithmic integral 2-143 4-389

M
machine epsilon 1-23
Maclaurin series 2-22
matrix

addition 4-28
condition number 2-60

Index-3

Index

diagonal 4-118
exponential 4-229
inverse 4-323
left division 4-28
lower triangular 4-596
multiplication 4-28
power 4-29
rank 4-462
right division 4-29
size 4-505
subtraction 4-28
transpose 4-29
upper triangular 4-598

mfun 2-142 4-388
mfunlist 4-389
mod 4-398
multiplication

array 4-28
matrix 4-28

MuPAD software
accessing 4-401

mupadwelcome 4-401

N
null 4-417
null space 2-61
null space basis 4-417
numden 4-419
numeric matrix

converting to symbolic form 1-14
numeric symbolic expressions 1-22

O
ordinary differential equations

solving 4-134
orthogonal polynomials 2-147 4-394

P
poly 4-448
poly2sym 4-449
polygamma function 2-143
polynomial discriminants 2-80
power

array 4-29
matrix 4-29

pretty 4-454
example 2-22

propagating calculations 3-7

Q
quorem 4-461

R
rank 4-462
rational arithmetic 2-51
rational symbolic expressions 1-23
real 4-466
real property 1-4
real symbolic variables 1-4
recover lost handle 3-3
reduced row echelon form 4-481
reset 4-475
Riemann sums

evaluating 4-482
Riemann Zeta function 4-636
right division

array 4-29
matrix 4-29

Rosser matrix 2-65
round 4-480
rref 4-481
rsums 4-482

Index-4

Index

S
setVar 4-484
shifted sine integral 2-143 4-389
simplifications 2-33
simplify 2-39
simultaneous differential equations

solving 2-92 2-103
simultaneous linear equations

solving systems of 2-60 2-87
sine integral 2-143 4-389
sine integral function 4-503
sine integrals 2-142 4-389
single 4-502
singular value decomposition 2-71
sinint 4-503
solve 2-83
solving equations

algebraic 2-83
difference 2-108
ordinary differential 2-88 4-134

sort 4-523
special functions 2-142

evaluating numerically 4-388
listing 4-389

spherical coordinates 2-7
start MuPAD interfaces 4-401
subexpr 2-41 4-529
subexpressions 2-41
subs 2-43
summation

symbolic 2-21
sym 1-8 1-14
sym2poly 4-554
symbolic expressions 2-83

C code representation of 4-80
creating 1-8
decimal 1-23
differentiating 4-121
expanding 4-220
factoring 4-259

floating-point 1-22
Fortran representation of 4-273
integrating 4-314
LaTeX representation of 4-346
limit of 4-351
numeric 1-22
prettyprinting 4-454
product of 4-559
rational 1-23
simplifying 4-529
summation of 4-567
Taylor series expansion of 4-573

symbolic matrix
computing eigenvalue of 2-66
creating 1-12
differentiating 2-6

symbolic objects
about 1-4
creating 4-562

symbolic polynomials
converting to numeric form 4-554
creating from coefficient vector 4-449
Horner representation of 4-300

symbolic summation 2-21
symbolic variables

complex 1-4
creating 1-8
real 1-4

symengine 4-556
symprod 4-559
syms 1-8 4-562
symsize 4-505
symsum 2-21 4-567
symvar 4-570

T
taylor 2-22 4-573
Taylor series 2-22
Taylor series expansion 4-573

Index-5

Index

taylortool 4-581
transpose

array 4-29
matrix 4-29

tril 4-596
triu 4-598

U
uint16 4-600
uint32 4-600
uint64 4-600
uint8 4-600

V
variable-precision arithmetic 2-50 4-604

setting accuracy of 4-123
variable-precision numbers 2-53
vpa 2-53 4-604

Z
z-transform 2-108
zeta 4-636

Index-6

	toc
	Acknowledgments
	Getting Started
	Product Description
	Key Features

	Access Symbolic Math Toolbox Functionality
	Work from MATLAB
	Work from MuPAD

	Symbolic Objects
	Overview of Symbolic Objects
	Symbolic Variables
	Symbolic Numbers

	Create Symbolic Variables and Expressions
	Create Symbolic Variables
	Create Symbolic Expressions
	Create Symbolic Functions
	Create Symbolic Objects with Identical Names
	Create a Matrix of Symbolic Variables
	Use Existing Symbolic Objects as Elements
	Generate Elements While Creating a Matrix

	Create a Matrix of Symbolic Numbers
	Find Symbolic Variables in Expressions, Functions, Matrices
	Find a Default Symbolic Variable

	Perform Symbolic Computations
	Simplify Symbolic Expressions
	Substitutions in Symbolic Expressions
	Substitute Symbolic Variables with Numbers
	Substitute in Multivariate Expressions
	Substitute One Symbolic Variable for Another
	Substitute a Matrix into a Polynomial
	Substitute the Elements of a Symbolic Matrix

	Estimate Precision of Numeric to Symbolic Conversions
	Conversion to Floating-Point Symbolic Form
	Conversion to Rational Symbolic Form
	Conversion to Rational Symbolic Form with Machine Precision
	Conversion to Decimal Symbolic Form

	Differentiate Symbolic Expressions
	Expressions with One Variable
	Partial Derivatives
	Second Partial and Mixed Derivatives

	Integrate Symbolic Expressions
	Indefinite Integrals of One-Variable Expressions
	Indefinite Integrals of Multivariable Expressions
	Definite Integrals
	If MATLAB Cannot Find a Closed Form of an Integral

	Solve Equations
	Solve Algebraic Equations with One Symbolic Variable
	Solve Algebraic Equations with Several Symbolic Variables
	Solve Systems of Algebraic Equations

	Create Plots of Symbolic Functions
	Explicit Function Plot
	Implicit Function Plot
	3-D Plot
	Surface Plot

	Assumptions on Symbolic Objects
	Default Assumption
	Set Assumptions
	Check Existing Assumptions
	Delete Symbolic Objects and Their Assumptions

	Using Symbolic Math Toolbox Software
	Differentiation
	Derivatives of Expressions with Several Variables
	More Examples

	Limits
	One-Sided Limits

	Integration
	Integration with Real Parameters
	Integration with Complex Parameters

	Symbolic Summation
	Taylor Series
	Find Asymptotes, Critical and Inflection Points
	Define a Function
	Find Asymptotes
	Find Maximum and Minimum
	Find Inflection Point

	Simplifications
	collect
	expand
	horner
	factor
	simplifyFraction
	simplify

	Substitute with subexpr
	Substitute with subs
	Combine subs and double for Numeric Evaluations
	Variable-Precision Arithmetic
	Overview
	Different Kinds of Arithmetic
	Rational Arithmetic
	Variable-Precision Numbers
	Conversion to Floating-Point

	Accuracy of Numeric Computations

	Basic Algebraic Operations
	Linear Algebraic Operations
	Eigenvalues
	Jordan Canonical Form
	Singular Value Decomposition
	Eigenvalue Trajectories
	Solve an Algebraic Equation
	Solve a System of Algebraic Equations
	Solve a Single Differential Equation
	First-Order Linear ODE
	Nonlinear ODE
	Second-Order ODE with Initial Conditions
	Third-Order ODE
	More ODE Examples

	Solve a System of Differential Equations
	Compute Fourier and Inverse Fourier Transforms
	Compute Laplace and Inverse Laplace Transforms
	Compute Z-Transforms and Inverse Z-Transforms
	References

	Create Plots
	Plot with Symbolic Plotting Functions
	Plot with MATLAB Plotting Functions
	Plot Multiple Symbolic Functions in One Graph
	Plot Multiple Symbolic Functions in One Figure
	Combine Symbolic Function Plots and Numeric Data Plots

	Explore Function Plots
	Edit Graphs
	Save Graphs
	Generate C or Fortran Code
	Generate MATLAB Functions
	Generating a Function Handle
	Control the Order of Variables
	Generate a File
	Name Output Variables
	Convert MuPAD Expressions

	Generate MATLAB Function Blocks
	Generate and Edit a Block
	Control the Order of Input Ports
	Name the Output Ports
	Convert MuPAD Expressions

	Generate Simscape Equations
	Convert Algebraic and Differential Equations
	Convert MuPAD Equations
	Limitations

	Special Functions of Applied Mathematics
	Evaluate Special Functions Numerically Using mfun
	Syntax and Definitions of mfun Special Functions
	Diffraction Example

	MuPAD in Symbolic Math Toolbox
	MuPAD Engines and MATLAB Workspace
	Create, Open, and Save MuPAD Notebooks
	Calculate in a MuPAD Notebook
	Visual Elements of a Notebook
	Work in a Notebook
	Cascade Calculations
	Synchronize Notebook and its Engine

	Edit and Debug MuPAD Code
	Edit the Code in the MATLAB Editor
	Debug the Code in the MuPAD Debugger

	Notebook Files and Program Files
	Source Code of the MuPAD Library Functions
	Differences Between MATLAB and MuPAD Syntax
	Copy Variables and Expressions Between MATLAB and MuPAD
	Copy and Paste Using the System Clipboard

	Reserved Variable and Function Names
	Conflicts Caused by MuPAD Function Names
	Conflicts Caused by Syntax Conversions

	Open MuPAD Interfaces from MATLAB
	Call Built-In MuPAD Functions from MATLAB Command Window
	evalin
	feval
	evalin vs. feval
	Floating-Point Arguments of evalin and feval

	Computations in MATLAB Command Window vs. MuPAD Notebook Interfa
	Results Displayed in Typeset Math
	Graphics and Animations
	More Functionality in Specialized Mathematical Areas
	More Options for Common Symbolic Functions
	Possibility to Expand Existing Functionality

	Use Your Own MuPAD Procedures
	Write MuPAD Procedures
	Steps to Take Before Calling a Procedure
	Read MuPAD Procedures
	Use Startup Commands and Scripts

	Call Your Own MuPAD Procedures

	Clear Assumptions and Reset the Symbolic Engine
	Check Assumptions Set On Variables
	Effects of Assumptions on Computations

	Create MATLAB Functions from MuPAD Expressions
	Copy MuPAD Variables to the MATLAB Workspace
	Generate MATLAB Code in a MuPAD Notebook

	Create MATLAB Function Blocks from MuPAD Expressions
	Create Simscape Equations from MuPAD Expressions
	GenerateSimscape Equations in the MuPAD Notebook Interface
	Generate Simscape Equations in the MATLAB Command Window

	Functions — Alphabetical List
	Index

	tables
	mfun Special Functions
	Orthogonal Polynomials
	Common Tasks in MATLAB and MuPAD Syntax
	MATLAB vs. MuPAD Expressions
	mfun Special Functions
	Orthogonal Polynomials

